Cho
A=3+22+23+......+22001+22002 và B=22003
So sánh A và B
Giải ra hộ mình cái
Đừng mình tick cho
so sánh hai lũy thừa sau
a)5^23 và 6.5^22
b)7.2^13 và 2^16
c)21^15 và 27^5.49^8
mình cần gấp ,ai giải mình tick cho
chiều nay xong nha
a) 523 và 6*522
523 = 5 * 522
Vì 5<6 suy ra 5 * 522 < 6 * 522 hay 523 < 6*522
Vậy: 523 < 6 * 522
b) 7 * 213 và 216
216 = 23 * 213 = 8 * 213
Vì 7 < 8 suy ra 7 * 213 < 8 * 213 hay 7 * 213 < 216
Vậy: 7 * 213 < 216
c) 2115 và 275 * 498
275 * 498 = [(3)3]5 * [(7)2]8 = 315 * 716 = 315 * 715 *7 = (3*7)15 *7 = 2115 * 7
Vì 2115 < 2115 * 7 suy ra 2115 < 275 * 498
Vậy: 2115 < 275 * 498
cho A=1+2+22+...22002
B=22003
so sánh A vs B
Ta có:
\(A=1+2+2^2+...+2^{2002}\)
\(2A=2+2^2+2^3+...+2^{2003}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)
\(A=2^{2003}-1\)
Mà: \(2^{2003}=2^{2003}\)
\(\Rightarrow2^{2003}-1< 2^{2003}\)
\(\Rightarrow A< B\)
Cho: A=1.3.5.7.....49;B=26/2.27/2.....50/2;So sánh: A và B
AI GIẢI CHI TIẾT HỘ MÌNH THÌ MÌNH SẼ TICK NHÉ !
Cho A = 2+ 22 + 23 +……+ 260 . So sánh A và B = 261.
Mình đg cần gấp ạ!!
\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)
Ta thấy: \(2^{61}-2< 2^{61}\)
\(\Rightarrow A< B\)
A=2+22+23+...+260
\(\Rightarrow\)2A=22+23+24+...+261
\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)
\(\Rightarrow\)A=261-2
Mà 261-2<261 nên A<B
Vậy A<B
Hãy so sánh :
5 mũ 23 và 6 nhân 5 mũ 22
viết đầy đủ ra thì mình tick cho
So sánh 523 và 6 x 522
Ta có:
523 = 5 x 522
\(\Rightarrow\)523 < 6 x 522
Tìm a và B biết a+B=84 giải hộ mình với mình tick cho
a) tìm a và b để 123ab chia hết cho 2, 3, 5
b) tìm a và b biết số 3ab chia hết cho 5, chia 7 dư 2, chia 9 dư 4
giải ra hộ mình giải bài rõ ràng 6 tick
a) 123ab chia hết cho 2 và 5 nên b=0
123a0 chia hết cho 9 nên (1+2+3+a+0) chia hết cho 3
=>(6+a) chia hết cho 3
=>a=0;a=3;a=6;a=9
b)3ab chia hết cho 5 nên b=0 hoặc b=5
+với b=5:
3a5 chia 9 dư 4 nên (3+a+5) chia 9 dư 4
=>(8+a) chia 9 dư 4;
=>a=5
mà 355 chia 7 dư 5=>ko thỏa mãn
+với b=0:
3a0 chia 9 dư 4 nên (3+a+0) chia 9 dư 4;
=>(3+a) chia 9 dư 4;
=>a=1
Mà 310 chia 7 dư 2 => số cần tìm là 310
A=1/2+2/22+3/23+...+2022/22022+2023/22023 So sánh A với 2.Các bạn nào giỏi thì giải hộ mình với:)))cám ơn!
Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)
Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)
Suy ra A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2
Vậy A < 2
\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)
Sửa:
$2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{20 23}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2$So sánh các lũy thừa sau : Mong các bạn giải mau giúp mình. Mình cần gấp.Ai giúp mình đầu tiên mình tick đúng cho
a) 24 và 42
b) 316 và 275
c) 233 và 322
d) 223 và 332
a) 24 và 42.Ta có: b)316 và 275.Ta có:
24=(22)2=42 275=(33)5=315<316
=>24=42.Vậy.. =>275<316.Vậy...
c)233 và 322.Ta có: d)chịu
233=(23)11=811
322=(32)11=911>811.
=>233<322.Vậy....
a) \(2^4\)
\(4^2=\left(2^2\right)^2=2^4\)
\(\Rightarrow2^4=4^2\)
b) \(3^{16}=3^{16}\)
\(27^5=\left(3^3\right)^5=3^{15}\)
\(\Rightarrow3^{16}>27^5\)