Tìm m biết \(\frac{m}{1000}+\frac{m+1}{1000}+...+\frac{m+100}{1000}=5050\)
Bài 1 :
a) 1 : \(\frac{1}{10}\)= ............ 1m gấp ............. lần \(\frac{1}{10}\)m
b) \(\frac{1}{10}\): \(\frac{1}{100}\)= ............. \(\frac{1}{10}\)m gấp .............. lần \(\frac{1}{100}\)m
c) \(\frac{1}{100}\): \(\frac{1}{1000}\)= ............. \(\frac{1}{100}\)m gấp .............. lần \(\frac{1}{1000}\)m
Giúp em bài toán này với em đang gấp
Tính M=\(\sqrt{1+999^2+\frac{999^2}{1000^2}}\)+\(\frac{999}{1000}\)
tìm x biết
a,\(\frac{1}{100}< \frac{x}{110}< \frac{1}{50}\)
b,\(\frac{123}{1000}< \frac{x}{2008}< \frac{124}{1000}\)
tìm số tự nhiên x biết
a.\(\frac{1}{100}< \frac{x}{110}< \frac{1}{50}\)
b.\(\frac{123}{1000}< \frac{x}{2008}< \frac{124}{1000}\)
\(\frac{1}{10}< \frac{x}{11}< \frac{1}{5}\Rightarrow\frac{11}{110}< \frac{x}{110}< \frac{22}{110}\Rightarrow x\in12;...;21\)
\(\frac{2}{25}\)m = ... m
\(\frac{25}{100}\)tấn = .. tấn
\(\frac{3215}{1000}\)kg = ... kg
2/25m= 0,08 m
25/100 tân = 0,25 tân
3215/1000 kg = 3,215 kg nha bn
\(\frac{2}{25}m=0,08m\)
\(\frac{25}{100}\)tấn \(=\frac{1}{4}\)tấn \(=0,25\)tấn
\(\frac{3215}{1000}kg\)\(=3,215kg\)
Cho a> 10, b >100, c >1000. Tìm MIn
P=\(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}|\)
Áp dụng tính: M= \(\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
chứng minh rằng \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
Áp dụng tính \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
\(VT=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2-\left(\frac{2}{ab}-\frac{2}{a\left(a+b\right)}-\frac{2}{b\left(a+b\right)}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2-\frac{2\left(a+b\right)-2b-2a}{ab\left(a+b\right)}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|=VP\)
Áp dụng tính M: \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
\(M=999.\sqrt{\frac{1}{999^2}+\frac{1}{1^2}+\frac{1}{\left(999+1\right)^2}}+\frac{999}{1000}\)
\(M=999.\left(\frac{1}{1}+\frac{1}{999}-\frac{1}{1000}\right)+\frac{999}{1000}\)
\(M=999+1-\frac{999}{1000}+\frac{999}{1000}=1000\)
Vậy M=1000.
CMR \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
Áp dụng tính : \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
- Gỉa sử \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\left(\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\right)^2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}\)
=> \(\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}=0\)
=> \(\frac{a+b}{ab\left(a+b\right)}-\frac{a}{ab\left(a+b\right)}-\frac{b}{ab\left(a+b\right)}=0\)
=> \(\frac{a+b-a-b}{ab\left(a+b\right)}=\frac{0}{ab\left(a+b\right)}=0\) (Luôn đúng )
Vậy ....
- Áp dụng : \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
=> \(M=\sqrt{1+999^2+\frac{999^2}{\left(1+999\right)^2}}+\frac{999}{1000}\) ( với \(a=1,b=999\) )
=> \(M=1+999-\frac{999}{1000}+\frac{999}{1000}=1000\)