Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Vân Anh
Xem chi tiết
Nguyễn Minh Quang
25 tháng 10 2015 lúc 12:43

chua ai tra loi cau nay a

Uzumaki Naruto
Xem chi tiết
Dương Thanh Hương
Xem chi tiết

\(x+yu=z+tu\)

\(\left(x-z\right)+u\left(y-t\right)=0\)

vì x, y, t là sô hữu tỉ và u là số vô tỉ nên để \(\left(x-z\right)+u\left(y-t\right)=0\) thì

\(\begin{cases}x-z=0\\ y-t=0\end{cases}\)\(\begin{cases}x=z\\ y=t\end{cases}\)

Lê Diệu Thương
Xem chi tiết
Nguyen Ngoc Thanh Truc
Xem chi tiết
Thuy Bui
20 tháng 11 2021 lúc 21:28

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ

Nguyễn Thanh Huyền
Xem chi tiết
Trần Thị Thùy
9 tháng 11 2016 lúc 20:41

Giả sử x+y=z là một số hữu tỉ, khi đó ta có y=z-x

vì z và x thuộc Q nên z-x thuộc Q, do đó y thuộc Q. Điều này trái với đề bài.

Vậy x+y là số vô tỉ

Chứng minh tương tự x-y là số vô tỉ

Giả sử x.y=z là một số hữu tỉ, khi đó ta có y=z\x. Vì x, y thuộc Q nên z\x thuộc Q,

do đó y thuộc Q. Điều này trái với đề bài. Vậy x.y là một số vô tỉ

Chứng minh tương tự x:y là số vô tỉ

Thiên Tỉ ca ca
Xem chi tiết
Đàm Đức Mạnh
16 tháng 9 2016 lúc 18:14

4858347

Hoàng Thị Vân Anh
26 tháng 10 2016 lúc 23:10

trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có  bài tương tự đó bạn

Nguyen Nhat Minh
Xem chi tiết
Nguyễn Linh Chi
14 tháng 3 2019 lúc 11:28

x, y là số hữu tỉ khác 0 

Đặt \(x=\frac{a}{b},y=\frac{c}{d}\)vs (a, b)=1, (c, d)=1 và a, b, c, d khác 0 và  a, b, c, d nguyên, ad+bc khác 0  vì x+y khác 0

Xét 

A=\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}=\)\(\frac{y^2+x^2}{\left(xy\right)^2}+\frac{1}{\left(x+y\right)^2}=\frac{\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+\left(xy\right)^2}{\left(xy\right)^2\left(x+y\right)^2}\)

\(=\frac{\left(x^2+y^2\right)^2+2\left(x^2+y^2\right)xy+\left(xy\right)^2}{\left[xy\left(x+y\right)\right]^2}=\frac{\left[\left(x^2+y^2\right)+xy\right]^2}{\left[xy\left(x+y\right)\right]^2}=\left[\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right]^2\)

\(=\left(\frac{a^2d^2+b^2c^2+abcd}{ac\left(ad+bc\right)}\right)^2\)là bình phương của một số hữu tỉ 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 3 2018 lúc 14:39

Giả sử x + y = z là một số hữu tỉ.

Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ

Hay y ∈ Q trái giả thiết y là số vô tỉ

Vậy x + y là số vô tỉ

Giả sử z = x.y là một số hữu tỉ

Suy ra y = z : x mà x ∈ Q, z ∈ Q

Suy ra y ∈ Q trái giả thiết y là số vô tỉ

Vậy xy là số vô tỉ