Tìm x để căn thức sau có nghĩa:
\(\sqrt{x^2-6x+4}\)
tìm x để căn thúc sau có nghĩa
\(\sqrt{25-x^2}\)
M=\(\sqrt{x+4}+\sqrt{2-x}\) tìm x thuộc z đẻ biểu thức M có nghĩa
\(\sqrt{25-x^2}\) lớn hơn hoặc= 0
=> 25-x2 lớn hơn hoặc= 0
=> -x2 lớn hơn hoặc= -25
x2 bé hơn hoặc =25
x bé hơn hoặc =5
a: ĐKXĐ: \(-5\le x\le5\)
b: ĐKXĐ: \(-4\le x\le2\)
mà x nguyên
nên \(x\in\left\{-4;-3;-2;-1;0;1;2\right\}\)
Bài 1: tìm x để mỗi căn thức sau có nghĩa:
a)\(\sqrt{x^2+2x-2}\)
b)\(\sqrt{-x^2+6x-4}\)
Giúp mình với, mình cần gấp lắm ạ !!!
\(\sqrt{9x^2-6x+1}\) tìm x để căn thức có nghĩa
có \(9x^2-6x+1=\left(3x-1\right)^2\)
lại có \(\left(3x-1\right)^2\)>= 0 với mọi x
\(\Rightarrow\sqrt{9x^2-6x+1}\)luôn xác định với mọi x
căn thức trên có nghĩa khi : 9x2 -6x +1 > 0
<=> giải pt trên ta có x > 1/3
Vậy x > 1/3 thì căn thức có nghiệm
Bài làm:
Điều kiện xác định:
\(9x^2-6x+1\ge0\Leftrightarrow\left(3x-1\right)^2\ge0\)
Vậy \(\sqrt{9x^2-6x+1}\)có nghĩa với mọi giá trị \(x\inℝ\)
Học tốt!!!!
Tìm x để mỗi căn thức sau có nghĩa\
\(\sqrt{-3x+4}\)
\(-3x+4\ge0\\ \Rightarrow-3x\ge-4\\ \Rightarrow x\le\dfrac{4}{3}\)
Tìm x để mỗi căn thức sau có nghĩa
\(\sqrt{1+x^2}\)
\(ĐK:x^2+1\ge0\Leftrightarrow x\in R\)
\(1+x^2\ge0\)(luôn đúng)
\(\Rightarrow x\in R\)
Tìm điều của x để căn thức sau có nghĩa
\(\sqrt{x^2-9}\)
\(\sqrt{x^2+9}\)
\(\sqrt[3]{3x+9}\)
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b) ĐKXĐ: \(x\in R\)
c) ĐKXĐ: \(x\in R\)
Tìm x để các căn thức sau có nghĩa
\(\sqrt{x^2+2x+3}\)
\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+3}\) xác định với mọi x
Làm như bài trước mik làm, bn chứng minh \(x^2+2x+3\ge0\) là đc
Tìm điều kiện của x để căn thức sau có nghĩa
a) $\sqrt{2x+10}$ +1/(x^2-4)
b) $\sqrt{\frac{x^2+1}{x-1}}$
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
Tìm điều kiện của x để căn thức sau có nghĩa :
\(\sqrt{\frac{2}{x^2-4x+4}}\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa