Cho(a×b)=1
Chung minh rang:
a) ( a,a-b)=1
b) ( ab,a+6)=1
cho (a,b) = 1 chung minh rang :
(a,a - b ) =1
(ab ,a + b )=1
Cho (a,b)=1, chung minh rang :
a) ( a, a-b )=1 b) (ab, a+b )=1
a) Gọi d thuộc ƯCLN (a, a-b)
=> a chia hết cho d; a-b chia hết cho d (1)
mà a chia hết cho d (2)
Từ (1) và (20 => b chia hết cho d
Do (a,b)=1 => d=1
Vậy ƯCLN(a,a-b)=1
(đpcm)
b) Đặt ước chung nguyên tố lớn nhất của ab và a+b là d .
=>
ab :/ d ( :/ là kí hiệu chia hết của rieng tui ) =>
[ a :/ d ( do d nguyên tố ) , mà a+b :/d => b :/ d
[ b :/ d ......................... , mà a+ b :/d => a:/d
tóm lại cả a và b đều chia hết cho d . d nguyên tố => d >1 => ( a ,b ) > 1 . Vô lý
=> d =1
Vậy ( ab , a+b ) =1
BAI 1: TIM X BIET so tu nhien x/7 du 6. chung minh rang x.x/7 du 1
bai 2: cho 2.(a.a+b.b)=(a+b).(a+b) chung minh rang a=b
Cho hai số thực a , b thỏa điều kiện ab = 1, a +b ¹ 0 . Tính giá trị của biểu thức:
P = 1 ( a + b ) 3 ( 1 a 3 + 1 b 3 ) + 3 ( a + b ) 4 ( 1 a 2 + 1 b 2 ) + 6 ( a + b ) 5 ( 1 a + 1 b )
Với ab = 1 , a + b ¹ 0, ta có:
P = a 3 + b 3 ( a + b ) 3 ( a b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 ( a b ) 2 + 6 ( a + b ) ( a + b ) 5 ( a b ) = a 3 + b 3 ( a + b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) ( a + b ) 5 = a 2 + b 2 − 1 ( a + b ) 2 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a + b ) 2 + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a 2 + b 2 + 2 ) + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 ) 2 + 4 ( a 2 + b 2 ) + 4 ( a + b ) 4 = ( a 2 + b 2 + 2 ) 2 ( a + b ) 4 = ( a 2 + b 2 + 2 a b ) 2 ( a + b ) 4 = ( a + b ) 2 2 ( a + b ) 4 = 1
Vậy P = 1, với ab = 1 , a+b ¹ 0.
cho a,b >0, a+b=1
B= 1/a^2+b^2 + 1/ab + 2ab
C=1/a^2+b^2 + 1/ab + 4ab
D=1/a^2+b^2 + 1/ab + 5ab
cho a,b,c là 3 số dương thoả mãn 1/a + 1b + 1/c <=3 .chứng minh rằng a/(1+b^2) + b/(1+c^2) + c/(1+a^2) + 1/2(ab+bc+ca) >= 3
cho a,b,c la cac so nguyen thoa man a+b+c+ab+bc+ca=6. chung minh rang a^2+b^2+c^2 khong nho hon 3
Cho a+5/a-5=b+6/b-6 (a khac 5 b khac 6).Chung minh rang a/b=5/6
\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)
\(=\frac{a+5}{b+6}=\frac{a-5}{b-6}=\frac{a+5-a+5}{b+6-b+6}=\frac{10}{12}=\frac{5}{6}\)
\(\Rightarrow\frac{a+5}{a-5}=\frac{5}{6}\)
\(\Rightarrow6a+30=5a-25\)
\(\Rightarrow6a-5a=-25-30\)
\(\Rightarrow a=-55\)
\(\Rightarrow\frac{b+6}{b-6}=\frac{5}{6}\)
\(\Rightarrow6b+36=5b-30\)
\(\Rightarrow6b-5b=-30-36\)
\(\Rightarrow b=-66\)
\(\Rightarrow\frac{a}{b}=\frac{-55}{-66}=\frac{5}{6}\left(đpcm\right)\)
Ta co a+5/a-5=b+6/b-6
<=> (a+5).(b-6)=(a-5).(b+6)
<=> 6a=5b
<=> a/b=5/6
,
chứng minh a^2n+1+b^2n+1=(a+b)(a^2n-1b+a^2n-1b^2)