Bài 1 : Tìm chữ số a , b biết :
ab = 5 x a x b + 2
Bài 1:Cho a và b,biết
a=999. . .91(có 2005 chữ số mà 2004 chữ số đầu đều bằng 9)
b=222. . .22(có 2005 chữ số đều bằng 2)
Chứng minh rằng:a x b - 5 chia hết cho 3
Bài 2: Tìm X
4X( 2X^2 - 1) + 27=( 4X^2 +6X + 9)x(2X + 3)
Bài 3: Chứng minh đẳng thức sau:
(a+b+c)^3 = a^3 + b^3 + c^3 + 3 x (a+b)(b+c)(c+a)
(a+b+c)3= (a+b)3+3(a+b)2c+3(a+b)c2+c2
=a3+3a2b+3ab2+b2+3(a+b)c(a+b+c)+c2
=a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]
=a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
Vậy (a+b+c)3 = a3 + b3 + c3 + 3(a+b)(b+c)(c+a)
bài 1 tìm số có 2 chữ số ab biết
ab :(a+b)=6 (dư 7)
bài 2 tìm số abc
abc =5.ab+50
1.tìm chữ số x,biết: 9,7x8 < 9,718
2.tìm số tự nhiên x,biết:
a.0,9 < x <1,2 b.̉64,97< x <65,14
x là số cần tìm
giải chi tiết giùm mình nha
Bài 1 Tìm các số tự nhiên a và b biết :
a, a - b = c và ƯCLN(a,b) = 16
b,a - b = 90 và ƯCLN(a,b) = 15
c, ab = 294 và ƯCLN (a,b) =7
Bài 2 Tìm số tự nhiên n biết rằng trong ba số 6 , 16, n bất kì số nào cũng là ước của hai số kia
Bài 3 Tìm số tự nhiên lớn nhất có 3 chữ số biết rằng chia nó cho 10 thì dư 3 chia nó cho 12 thì dư 5 chia nó cho 15 thì dư 8 và nó chia hết cho 19
Bài 4 Tìm số tự nhiên nhỏ nhất để khi chia cho 5 ; 8 ; 12 thì số dư theo thứ tự là 2 ; 6 ; 8
Bạn nào trả lời nhanh nhất đủ cả 4 bài đầy đủ lời giải mình like
Bài toán 1: Tìm a biết: 1/5 x 3/a x 4/7= 2x3x4/5x6x7
Bài toán 2: Tìm số tự nhiên a biết:
5/3 < a < 5/7 : 1/3
Bài toán 3: Tìm a biết: 3/4 : 5/6 : 3/a = 9/16
Tìm các số có 2 chữ số ab biết (a+b) x (a-b) = 20
Ai làm nhanh và đúg mik kick nha
tìm 2 số a và b có một chữ số biết a x b = ( a + b ) x 2
Bài 1:Cho a và b,biết
a=999. . .91(có 2005 chữ số mà 2004 chữ số đầu đều bằng 9)
b=222. . .22(có 2005 chữ số đều bằng 2)
Chứng minh rằng:a x b - 5 chia hết cho 3
Ta thấy : 91 x 22 = 2002
991 x 222 = 220002
...........
Dùng quy nạp ta chứng minh được:
99...91 x 22...2 = 2...20..0...2 (2004 chữ số 2, 2005 chữ số 0)
Vậy thì a x b - 5 = 22...219...97 (2003 chữ số 2, 2005 chữ số 9)
Tổng các chữ số của a x b - 5 là: 2 x 2003 + 1 + 9 x 2005 + 7 = 22059 chia hết 3
Vậy a x b - 5 chia hết cho 3.
Bài 1: Ba phân số tối giản có tổng bằng \(\frac{213}{70}\)các tử của chúng có tỉ lệ vs 3;4;5, các mẫu của chúng tỉ lệ vs 5;1;2.
Tìm 3 phân số đó
Bài 2: Tìm số tự nhiên n có hai chữ số biết rằng 2 số 2n+1 và 3n+1 đồng thời là số chính phương.
Bài 3: Tìm 3 số tự nhiên a;b;c biết \(\frac{3a\:-\:2b}{5}=\frac{2c\:\:-\:5a}{3}=\frac{5b\:-\:3c}{2}\)và a + b + c = -50
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
bài 2
Giải:
Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)
10≤n≤99⇒21≤2n+1≤19910≤n≤99⇒21≤2n+1≤199
⇒21≤a2≤199⇒21≤a2≤199
Mà 2n + 1 lẻ
⇒2n+1=a2∈{25;49;81;121;169}⇒2n+1=a2∈{25;49;81;121;169}
⇒n∈{12;24;40;60;84}⇒n∈{12;24;40;60;84}
⇒3n+1∈{37;73;121;181;253}⇒3n+1∈{37;73;121;181;253}
Mà 3n + 1 là số chính phương
⇒3n+1=121⇒n=40⇒3n+1=121⇒n=40
Vậy n = 40