\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
Giải phương trình:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(ĐK:x\in R\)
Đặt \(x^2-2x=a\), PTTT:
\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
GPT : \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)
<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)
<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)
Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)
Có \(\sqrt{6a+1}-a=-1\)
<=> \(\sqrt{6a+1}=a-1\)
=> \(6a+1=a^2-2a+1\)
<=> \(a^2-2a-6a+1-1=0\)
<=>\(a^2-8a=0\) <=>a(a-8)=0
=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)
giải pt: \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
Điều kiện xác định của pt : \(6x^2-12x+7\ge0\) => Với mọi số thực thì pt xác định
Ta có : \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow-\left(6x^2-12x+7\right)+6\sqrt{6x^2-12x+7}+7=0\)
Đặt \(t=\sqrt{6x^2-12x+7},t\ge0\) . pt trở thành : \(-t^2+6t+7=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{array}\right.\)
Với \(t=7\) ta có pt : \(6x^2-12x+7=49\)
\(\Leftrightarrow6x^2-12x-42=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1-2\sqrt{2}\\x=1+2\sqrt{2}\end{array}\right.\)
\(pt\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)
Đặt \(t=2x-x^2\left(t\ge0\right)\) pt trở thành
\(\sqrt{6t+7}=t\).Ta có 2 vế dương bình phương đc:
\(6t+7=t^2\)
\(\Leftrightarrow t^2-6t-7=0\)
\(\Leftrightarrow t^2-7t+t-7=0\)
\(\Leftrightarrow t\left(t-7\right)+\left(t-7\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(loai\right)\\t=7\left(tm\right)\end{array}\right.\).
Từ t=7 ta tìm được các giá trị của \(\left[\begin{array}{nghiempt}x=1-\sqrt{8}\\x=\sqrt{8}+1\end{array}\right.\)
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
tìm x
giải phương trình
a, \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b, \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
c, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
Giaỉ PT:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)
<=>\(t^2-7=6x^2-12x\)
\(\Leftrightarrow\dfrac{t^2-7}{6}=x^2-2x\)
Ta có pt mới:
\(\dfrac{7-t^2}{6}+t=0\)
\(\Leftrightarrow t^2-6t-7=0\)
\(\Leftrightarrow t^2-2\cdot t\cdot3+9-9-7=0\)
\(\Leftrightarrow\left(t-3\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}t=7\\t=-1\end{matrix}\right.\)(loại t=-1)
Với t=7
=>\(\sqrt{6x^2-12x+7}=7\)
<=>6x2-12x+7=49
<=>6x2-12x-42=0
<=>x2-2x-7=0
<=>(x-1)2=8
=>\(\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
2x-x2 + \(\sqrt{6x^2-12x+7}\) = 0
Ta có: \(2x-x^2+\sqrt{6x^2-12x+7}=0\) ( ĐK: \(x\inℝ\))
\(\Leftrightarrow\sqrt{6x^2-12x+7}=x^2-2x\)
\(\Leftrightarrow\left(\sqrt{6x^2-12x+7}\right)^2=\left(x^2-2x\right)^2\)
\(\Leftrightarrow6x^2-12x+7=x^4-4x^3+4x^2\)
\(\Leftrightarrow x^4-4x^3-2x^2+12x-7=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)-\left(2x^3-4x^2+2x\right)-\left(7x^2-14x+7\right)=0\)
\(\Leftrightarrow x^2\left(x^2-2x+1\right)-2x.\left(x^2-2x+1\right)-7.\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-7\right)\left(x-1\right)^2=0\)
+ \(\left(x-1\right)^2=0\)\(\Leftrightarrow\)\(x-1=0\)\(\Leftrightarrow\)\(x=1\)\(\left(TM\right)\)
+ \(x^2-2x-7=0\)\(\Leftrightarrow\)\(\left(x^2-2x+1\right)-8=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=8\)
\(\Leftrightarrow\)\(x-1=\pm2\sqrt{2}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-1=2\sqrt{2}\\x-1=-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=1+2\sqrt{2}\approx3,8284\left(TM\right)\\x=1-2\sqrt{2}\approx-1,8284\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{-1,8284;1;3,8284\right\}\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
giải pt
a) \(\sqrt{2x^2+5x+2}-2\sqrt{2x^2+5x-6}=0\)
b) \(\sqrt[5]{\frac{16x}{x-1}}+\sqrt[5]{\frac{x-1}{16x}}=\frac{5}{2}\)
c) \(\sqrt{6x^2-12x+7}+2x=x^2\)
d) \(x\left(x+1\right)-\sqrt{x^2+x+4}+2=0\)
e) \(\sqrt{3x^2+6x+4}=2-2x-x^2\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)
\(\Leftrightarrow6x^2+15x-26=0\)
b/ ĐKXĐ: ...
Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)
\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)
c/ĐKXĐ: ...
\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)
Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x-42=0\)
d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)
Đặt \(\sqrt{x^2+x+4}=a>0\)
\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)
e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)
Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)
\(\frac{a^2-4}{3}+a-2=0\)
\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)
ĐKXĐ:...
a/ \(\sqrt{2x^2+5x+2}=1+2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)+1+4\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow3\left(2x^2+6x-6\right)+4\sqrt{2x^2+5x-6}-7=0\)
Đặt \(\sqrt{2x^2+5x-6}=a\ge0\)
\(3a^2+4a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+5x-6}=1\)
\(\Leftrightarrow2x^2+5x-7=0\)