tìm x và y
x/2=y/3 và xy=54
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
Tìm x,y biết
0,xy(x) - 0, yx(y)=0,4(5) và xy+yx=99 ( có gạch ngang trên đầu)
Tìm x,y, z biết:
x/2 = y/3 và xy=54
Đặt \(\frac{x}{2}=\frac{y}{3}=k\left(k\inℚ\right)\)
=>\(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
ta có xy=54
(=) 2k.3k=54
(=) \(6.k^2\)=54
(=) \(k^2=9\)
=> k=3
=> \(\hept{\begin{cases}x=2.3\\y=3.3\end{cases}\left(=\right)\hept{\begin{cases}x=6\\y=9\end{cases}}}\)
Đặt : \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó : \(2k.3k=54\)
\(\Rightarrow6k^2=54\)
\(\Rightarrow k^2=54:6=9=3^2\)
\(\Rightarrow k=3\)hoặc \(k=-3\)
\(\Rightarrow x=2.3=6\)\(;y=3.3=9\)hoặc
\(x=2.\left(-3\right)=-6\)\(;y=3.\left(-3\right)=-9\)
Ta có :
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{54}{2.3}=\frac{54}{6}=9\)
\(\Rightarrow\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\)
\(\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=9\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3.2;y=3.3\\x=-3\cdot2;y=-3.3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}\)
Vậy ....
Tìm x,y biết 0,xy(x) - 0, yx(y)=0,4(5) và xy + yx = 99
mik đã gửi rồi, bạn vào câu tương tự là thấy
Tìm x,y biết 0,xy(x) - 0, yx(y)=0,4(5) và xy + yx = 99
xy + yx = 99 => 11.(x + y) = 99 => x + y = 9
0,xy(x) - 0,yx(y) = 0,4(5)
=> xy,(x) - yx,(y) = 45, (5)
=> xy + 0,(x) - yx - 0, (y) = 45 + 0,(5)
=> (xy - yx) + x/9 - y/9 = 45 + 5/9
=> 9(x - y) + (x - y)/ 9 = 410/9
=> (9 + 1/9). (x - y) = 410/9 => x - y = 5
Mà x + y = 9 nên (x + y) + (x - y) = 9 + 5 = 14 => 2x = 14 => x = 7
=> y = 2
Vậy....
tìm x,y,z biết xy=2 yz=3 và xz=54
\(\hept{\begin{cases}xy=2\\yz=3\\zx=54\end{cases}}\Rightarrow xy.yz.zx=2.3.54\)
\(\Rightarrow\left(xyz\right)^2=18^2\)\(\Rightarrow xyz=\pm18\)
Thế vào mà tìm x,y,z
bài 1 tìm các số x,y,z
a. x/2 = y/3 và xy = 54
Đặt x/2 = y/3 = k ta có: x = 2k và y = 3k
=> x.y = 2k.3k = 54
> 6k² = 54 => k=-3 ; 3
=> x = 6; y = 9 hoặc x = -6; y = -9
Đặt\(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\frac{x}{2}.\frac{y}{3}=\frac{xy}{6}=\frac{54}{6}=9=k^2\Rightarrow k\in\left\{3;-3\right\}\)
Khi \(k=3\) thì:\(\frac{x}{2}=3\Rightarrow x=6;\frac{y}{3}=3\Rightarrow y=9\)
Khi \(k=-3\)thì: \(\frac{x}{2}=-3\Rightarrow x=-6;\frac{y}{3}=-3\Rightarrow y=-9\)
Từ x/2=y/3=) x/2 ^2 = x/2. y/3= xy/ 6= 54/6= 9
=) x/2^2= 9=) x/2= 3=) x=6=) y/3 = 3=) y=9
Vậy y=9; x=6