Giải phương trình \(\frac{x+1}{2}=\sqrt{\frac{x^2+1}{6}}+\sqrt{\frac{x}{6}.}\)
giải phương trình
1) \(\sqrt{x-1}+\sqrt{2x-1}=5\)
2) \(\frac{1}{\sqrt{x}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+4}}+\frac{1}{\sqrt{x+4}+\sqrt{x+6}}=\frac{\sqrt{10}}{2}-1\)
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}6\sqrt{x+2}=\sqrt{x+y}\\\frac{3}{\sqrt{x+y}}+\frac{2}{\sqrt{x+2}}\end{cases}}=\frac{1}{2}\)1/2
Đặt \(u=\sqrt{x+2};v=\sqrt{x+y}\)
Hệ trở thành \(\hept{\begin{cases}6u=v\left(1\right)\\\frac{3}{v}+\frac{2}{u}=\frac{1}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{6u+4v}{2uv}=\frac{1}{2}\)
\(\Leftrightarrow\frac{5v}{2uv}=\frac{1}{2}\)(Thay từ (1))
\(\Leftrightarrow\frac{5}{2u}=\frac{1}{2}\Leftrightarrow\frac{1}{u}=\frac{1}{5}\Rightarrow u=5\)
\(\Rightarrow\sqrt{x+2}=5\Rightarrow x+2=25\Rightarrow x=23\)
u = 5 nên v = 30 hay \(\sqrt{x+y}=30\Rightarrow x+y=900\Rightarrow y=877\)
Vậy hệ có 1 nghiệm (23;877)
Hệ thứ 2 kết quả = 1/2 chứ ko phải 2 lần 1/2 đâu nhé
GIÚP EM ĐI Ạ
TÍNH:
\(\frac{3-\sqrt{6+\sqrt{3+\sqrt{6+\sqrt{3}}}}}{3-\sqrt{3+\sqrt{6+\sqrt{3}}}}+\frac{2+\sqrt{6+\sqrt{3+\sqrt{6+\sqrt{3}}}}}{3+\sqrt{6+\sqrt{3+\sqrt{6+\sqrt{3}}}}}\)
\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
\(\frac{1}{\sqrt{\frac{5}{13}}+\sqrt{\frac{5}{7}}+1}+\frac{1}{\sqrt{\frac{7}{5}}+\sqrt{\frac{7}{13}}+1}+\frac{1}{\sqrt{1\frac{6}{7}}+1+\sqrt{2\frac{3}{5}}}\)
RÚT GỌN
\(\sqrt{\left(x-1\right)^2}-x\) với x lớn hơn 1
GIẢI PHƯƠNG TRÌNH
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
Giải phương trình bậc nhất 1 ẩn sau đây:
\(\frac{2+\sqrt{3}}{3-\sqrt{5}}x-\frac{1-\sqrt{6}}{3+\sqrt{2}}\left(x-\frac{3-\sqrt{7}}{4-\sqrt{3}}\right)=\frac{15-\sqrt{11}}{2\sqrt{3}-5}\)
Bài 1: Tìm GTNN: \(A=\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}\)
Bài 2: giải phương trình: \(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)
giải phương trình vô tỉ sau
1) \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
2) \(\sqrt[3]{x+\frac{1}{2}}=16x^3-1\)
1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)
Tới đây thì đơn giản rồi nhé
2/ \(\sqrt[3]{x+\frac{1}{2}}=16x^3-1\)
\(\Leftrightarrow x+\frac{1}{2}=\left(16x^3-1\right)^3\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(8x^2+4x+1\right)\left(512x^6+64x^4-64x^3+8x^2-4x+3\right)=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
1. Giải phương trình: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)=1
2. Tìm nghiệm nguyên dương của: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{6xy}=\frac{1}{6}\)
2.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)