Bài 7B làm như nào vậy ạ mn giải chi tiết giúp e vs
MN GIÚP E BÀI 2,7,8 VỚI Ạ. GIẢI CHI TIẾT CÁCH LÀM DÙM E.
Hhduwhbsbbsxhhdjzbe ủbxuhxuenxurbxurn run ư nếu xiên Yến rũ EU. Hẹn
rung bình có phương và chiều trùng với vectơ độ dời
loading...
Độ lớn của vận tốc trung bình được tính như sau:
∣
v
t
b
→
∣
=
∣
Δ
r
→
∣
Δ
t
=
12
1
=
12
∣
v
tb
∣=
Δt
∣
Δr
∣
=
1
12
=12 (m/s)
(Do tam giác tạo bởi các vectơ
r
1
→
,
r
2
→
,
Δ
r
→
r
1
,
r
2
,
Δr
đều)
Đúng(18)
Gấp vs ạ mn giải chi tiết giúp e ạ
Câu 14: B
Câu 15: Không có câu nào đúng
Mn giúp mình bài 5,6 vs ạ!!!( giải thích chi tiết)
MN GIÚP E CÂU 5 VỚI Ạ. GIẢI CHI TIẾT CÁCH LÀM DÙM E VỚI Ạ.
Câu 5:
\(\Leftrightarrow-x^2+7x-9+2x-9=0\)
\(\Leftrightarrow x^2-9x+18=0\)
=>x=3
=>Chọn A
Giúp e bài 4 vs ạ(có vẽ hình),e cần cách lm dễ hiểu chi tiết,bài này e cần lắm luôn đó ạ nên giúp e lm đúng vs(nếu mn có thời gian thì giúp e luôn bài 2 vs,e ko đc chắc chắn bài này e lm có đúng ko)e cảm ơn nhìu lắm ạ!!!
Bài 2: Chọn C
Bài 4:
a: \(\widehat{C}=180^0-80^0-50^0=50^0\)
Xét ΔABC có \(\widehat{A}=\widehat{C}< \widehat{B}\)
nên BC=AB<AC
b: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
Bài 3 giải chi tiết giúp e vs ạ.e cảm ơn ạ
a)ABE = 180 độ - 35 độ = 145 độ
b) Vì DBC + BCy = 180 độ
=>Cy // DE
mà DE // Ax
=>Ax//Cy
Do BAx so le trong vs ABD
=>Bax = ABD = 35 độ
ABD và DBC kề bù
=> ABD + DBC = 35+55=90 độ
=>AB vuông góc vs BC
tick đi nhé
Giúp e bài T^2 và 2) vs ạ,đc cả hai bài càng tốt còn nếu ko giúp e một bài cx đc ạ,giải chi tiết giúp e e c.ơn nhìu lắm
Bài 2:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là tia phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
d: \(AH^2-AN^2=HN^2\)
\(BH^2-BM^2=MH^2\)
mà HN=MH
nên \(AH^2-AN^2=BH^2-BM^2\)
hay \(AH^2+BM^2=BH^2+AN^2\)
Mn làm giúp mình bài 8 với ạ mình đang cần gấp cảm ơn mn rất nhiều( giải thích chi tiết ạ).
Các số được điền vào các ô theo thứ tự từ trái sang phải là:
-1; - \(\dfrac{1}{3}\); \(\dfrac{2}{3}\); \(\dfrac{4}{3}\)
MN giúp e gấp vs ạ chi tiết ra giúp e ạ tks
Bài 2
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(2x^2-2x+3=0\)
\(\Delta'=1-3.2=-5< 0\)
Vậy pt vô nghiệm hay (d) ko cắt (P)
Giải chi tiết giúp mình! Đừng tắt quá nha. Mn làm đc bài nào thì làm
3.
Do \(sin\left(x+k2\pi\right)=sinx\Rightarrow sin\left(x+2020\pi\right)=sinx\)
\(sin\left(\dfrac{\pi}{2}+x\right)=cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}-x\right)=cos\left(-x\right)=cosx\)
\(A=\dfrac{sinx+sin3x+sin5x}{cosx+cos3x+cos5x}=\dfrac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}\)
\(=\dfrac{2sin3x.cosx+sin3x}{2cos3x.cosx+cos3x}=\dfrac{sin3x\left(2cosx+1\right)}{cos3x\left(2cosx+1\right)}\)
\(=\dfrac{sin3x}{cos3x}=tan3x\)
4.
a.
\(\overrightarrow{CB}=\left(2;-2\right)=2\left(1;-1\right)\)
Do đường thẳng d vuông góc BC nên nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình đường thẳng d đi qua \(A\left(-1;2\right)\) và có 1 vtpt là \(\left(1;-1\right)\) là:
\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)
b.
Gọi \(I\left(a;b\right)\) là tâm đường tròn, ta có \(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a+1;b-2\right)\\\overrightarrow{BI}=\left(a-3;b-2\right)\\\overrightarrow{CI}=\left(a-1;b-4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a+1\right)^2+\left(b-2\right)^2\\BI^2=\left(a-3\right)^2+\left(b-2\right)^2\\CI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)
Do I là tâm đường tròn qua 3 điểm nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-2\right)^2=\left(a-3\right)^2+\left(b-2\right)^2\\\left(a+1\right)^2+\left(b-2\right)^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a=8\\4a+4b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\)
\(\overrightarrow{AI}=\left(2;0\right)\Rightarrow R=AI=\sqrt{2^2+0^2}=2\)
Pt đường tròn có dạng:
\(\left(x-1\right)^2+\left(y-2\right)^2=4\)