Chứng minh rằng 4n + 6 chia het cho 2
CHỨNG MINH RẰNG
a; 74n- 1 chia hết cho 5
b; (34n+1+2)chia het cho 5
c; ( 92n+1+1)chia het cho 10
a) 74n = (72)2n = 492n = (....1)
=> 74n - 1 có tận cùng là 0 nên chia hết cho 5
b) 34n+1 = (32)2n .3 = 92n.3 = (....1).3 = (....3)
=> 34n+1 + 2 có tận cùng là 5 => chia hết cho 5
c) 92n+1 = (92n). 9 (...1).9 = (....9)
=> 92n+1 +1 có tận cùng la 0 => chia hết cho 5
cho mk hỏi câu này với các bạn ơi
giúp mk với nha!!!!
12^4n+1 + 3^4n+1 chia hết cho 5
CHỨNG MINH NHA!
Chứng minh rằng:74n-1 chia het cho 5
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
Bài 1: Chứng minh rằng
a; ( 74n _1) chia het cho 5
b; ( 34n +1+2 ) chia het cho 5
c; ( 92n +1+1 ) chia het cho 10
a) \(7^{4n-1}=2401^n-1\)
Vì chữ số cuối cùng của \(2401\) là 1 nên chữ số cuối cùng của \(2401^n-1\) là 1 với mọi n nguyên dương
\(\Rightarrow\)Chữ số cuối cùng của \(2401^n-1\)là 0\(\Rightarrow\)\(\left(7^{4n-1}\right)\)chia hết cho 5 với mọi n nguyên dương
1. chứng minh rằng: 34n+2 + 2*42n+1 chia het cho 17 voi moi n thuoc so tu nhien.
2.cho số nguyên tố p lớn hơn 3 chứng minh: 3p+2p-1 chia het cho 42p
3. chứng minh rằng nếu tổng hai phân số tối giản là 1 số nguyên thì hai phân số đó có mẫu bằng nhau.
4. tìm số có 3 chữ số abc sao cho (a+b+c)abc=1000
5. xác định n thuộc số tự nhiên sao cho n2-3n+6 chia hết cho 5.
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
Chứng minh
a) 74n-1 chia het cho 5
b) 34n+1 không chia het cho 5
Chứng minh rằng A = 4n2 + 4n+ 6 không chia hết cho 25 với mọi số n
Chứng minh rằng A= 4n^3+9n^2-19n-30 chia hết cho 6
Chứng minh rằng
175 + 244 - 1321 chia hết cho 10
( 74n -1 ) chia hết cho 5
34n+1 +2 chia hết cho 5
24n+2 +1 chia het cho 5
24n+1 +3 chia hết cho 5
92+1 +1 chia hết cho 10