tính nhanh :
A=(1/2+1)*(1/3+1)*(1/4+1)*...*(1/99+1)
Tính nhanh
a.(1+1/2)×(1+1/3)×(1+1/4)×...×(1+1/98)×(1+1/99).
b.1/2×2/3×3/4×...×97/98×98/99×99/100
a,=3/2*4/3*....100/99
=3*4*5*....*100/2*3*...*99
=100/2=50
b, nhân lên băng:
1*2*3*...*99/2*3*...*100=1/100
Tính nhanh
a) 1 + 2 + 3 + … + 99 + 100 b) 2 + 4 + 6 + … + 96 + 98
c) (–1) + 2 + (–3) + 4 + … + (–99) +100 d) –1 + 2 – 3 + 4 – … – 99 + 100
tính nhanh
a,(1-1/10)+(1-1/11)+(1-1/12)+...+(1-1/99)+(1-1/100)
b,1/2*3+1/2*4+1/4*5+...+1/99*100
Tính nhanh D=1/2*3+1/3*4+1/4*5+...+1/19*20 E=1/99-1/99*98-1/97*96-...-1/3*2-1/2*1
\(D=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
\(E=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-1+\dfrac{1}{99}=\dfrac{2}{99}-1=-\dfrac{97}{99}\)
1) Tính nhanh
a) Biểu thức A=(1-1/2) * (1-1/3) *(1-1/4) * ....(1-1/20)
b) B= 1 mũ2/1*2 *2 mũ/2*3 * 99 mũ/99*100
tính nhanh (1+2+3+...+99+100).(1/2-1/3-1/7-1/9)(63.1,2-21.3,6)/1-2+3-4+...+99-100
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)
Tính :
A=(1+1/1×3)×(1+1/2×4)×(1+1/3×5)×…×(1+1/99×101) nhanh nhanh giúp nha mai thi rồi
Tính nhanh: A = (1+1/2)*(1+1/3)*(1+1/4)*...............*(1+1/98)*(1+1/99)
=> \(\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x...x\frac{99}{98}x\frac{100}{99}\)
=> \(\frac{4x3x5x...x99x100}{2x3x4x...x98x99}\)
=>\(\frac{100}{2}=50\)
Tính nhanh
A=1/3-1/3^2+1/3^3-1/3^4+.......+1/3^99-1/3^100
tính nhanh
cho A=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
Ta có:
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=> \(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(A+3A=1-\frac{1}{3^{100}}\)
=> \(4A=\frac{3^{100}-1}{3^{100}}\)
=> \(A=\frac{3^{100}-1}{4.3^{100}}\)