-1-1/2-1/4-1/8-..-1/1024
lam vay co duoc ko
1/2+1/4+1/8+... +1/512+1/1024=1-1/2+1/2-1/4+...+1/512-1/1024=1-1/1024=1/1023
kết quả sai rồi phải là \(\frac{1023}{1024}\)
làm vậy cũng dc nhưng kết quả phải là \(\frac{1023}{1024}\) hén
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
-1-1/2-1/4-1/8-1/8-...-1/1024
\(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-...-\frac{1}{1024}\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(2A=-\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}-2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}\)
\(A=-2+\frac{1}{2^{10}}\)
Ta có: -1 - 1/2 - 1/4 - 1/8 - ... -1/1024
= -1 - (1 - 1/2) - (1/2 - 1/4) - .... - (1/512 - 1/1024)
= -1 - (1 - 1/1024)
= -1 - 1023/1024
= -2047/1024
1+1/2+1/4+1/8+...+1/1024
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{1024}\)
\(2A=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{512}\)
\(2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{512}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....+\dfrac{1}{1024}\right)\)
\(A=2-\dfrac{1}{1024}\)
\(A=\dfrac{2047}{1024}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\\ =1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\\ \Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{11}}\\ \Rightarrow A-\dfrac{1}{2}A=1-\dfrac{1}{2^{11}}\\ \Rightarrow A=2-\dfrac{1}{2^{10}}\)
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)+.....+\(\dfrac{1}{512}\)+ \(\dfrac{1}{1024}\)
2A = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)+ \(\dfrac{1}{8}\)+....+ \(\dfrac{1}{512}\)
2A - A = 2 - \(\dfrac{1}{1024}\)
A = 2 - \(\dfrac{1}{1024}\)
A = \(\dfrac{2047}{1024}\)
1/2+1/4+1/8+1/16+...+1/1024
Đặt $A=\dfrac12+\dfrac14+\dfrac18+\dfrac{1}{16}+...+\dfrac{1}{1024}$
$A=\dfrac12+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}$
$\dfrac12\cdot A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{11}}$
$A-\dfrac{1}{2}A=(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}})-(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{11}})$
$\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{11}}$
$\dfrac{1}{2}A=\dfrac{1}{2}\cdot(1-\dfrac{1}{2^{10}})$
$\Rightarrow A=1-\dfrac{1}{2^{10}}$
Vậy: ...
$Toru$
-1-1/2-1/4-1/8-...-1/1024=?
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{512}-\frac{1}{1024}\)
\(\Rightarrow2A=-2-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{512}\)
\(\Rightarrow2A-A=-2+\frac{1}{1024}\)
\(A=-2+\frac{1}{1024}\)
\(datA=-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)
\(-A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(-2A=2+1+\frac{1}{2}+...+\frac{1}{512}\)
\(-2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1024}\right)\)
\(-3A=2-\frac{1}{1024}\)
\(A=-\frac{\left(2-\frac{1}{1024}\right)}{3}\)
-1-1/2-1/4-1/8-...-1/1024
= -1-1+1/2-1/2+1/4-1/4+1/8-...+1/512-1/1024
=-1-1-1/1024
=-2\(\dfrac{1}{1024}\)
-1-1/2-1/4-1/8-...-1/1024
-1-1/2-1/4-1/8-...-1/1024