Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Binh Nguyen Le Thien
Xem chi tiết
Nguyễn Huy Hoàng
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 11 2021 lúc 8:29

a/ 

\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)

\(=\left(98a+7b\right)+3\left(a+b\right)\)

\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)

\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)

b/ xem lại đề bài

Khách vãng lai đã xóa

Trần Quốc Đại Nghĩa
Xem chi tiết
ý phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 13:42

b: Xét tứ giác ABCD có 

AB//CD

AB=CD

Do đó:ABCD là hình bình hành

Suy ra: AD=BC

tran mai chi
Xem chi tiết
ST
29 tháng 1 2017 lúc 20:41

a, Giả sử 10a + b \(⋮\) 17         (1)

Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17

=> 24a + 16b \(⋮\) 17                             (2)

Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17

=> 10a + b + 24a + 16b \(⋮\) 17

=> (10a + 24a) + (16b + b) \(⋮\) 17

=> 34a + 17b \(⋮\) 17

=> 17(2a + b) \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\)17 (đpcm)

b, Giả sử 10a + b \(⋮\) 17        (1)

Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17

=> 7a - 35b \(⋮\) 17                  (2)

Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17

=> 10a + b + 7a - 35b \(⋮\) 17

=> (10a + 7a) + (b - 35b) \(⋮\) 17

=> 17a + (-34b) \(⋮\) 17

=> 17.[a + (-2)b] \(⋮\) 17

=> Giả sử đúng

Vậy 10a + b \(⋮\) 17 (đpcm)

Hoàng Ngọc Hà
22 tháng 11 2021 lúc 9:43
23456789:123
Khách vãng lai đã xóa
Nguyễn Thị Kim Yến
22 tháng 11 2021 lúc 20:35

không biết

Khách vãng lai đã xóa
Nguyễn Mai Anh
Xem chi tiết

a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2

\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)

b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3

\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)

 

Phong
15 tháng 10 2023 lúc 9:07

a) Số a có dạng: \(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)

\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)

Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3 

\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1

b) Số a có dạng là: \(a=5k+3\) 

\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)

\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)

Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5

\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4 

Uyên Thảo Huỳnh Mai
Xem chi tiết
Bagel
24 tháng 12 2022 lúc 17:07

Hình dou ạ?

Mai Thành Công
Xem chi tiết
FHhcy04
Xem chi tiết
Khánh Huy Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2021 lúc 19:42

a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có 

BC chung

\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)

Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)

Suy ra: BK=CH(hai cạnh tương ứng)

Nguyễn Lê Phước Thịnh
19 tháng 4 2021 lúc 19:43

b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có 

\(\widehat{BCH}\) chung

Do đó: ΔAIC\(\sim\)ΔBHC(g-g)

Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CA\cdot CH=CB\cdot CI\)(đpcm)

Nguyễn Lê Phước Thịnh
19 tháng 4 2021 lúc 19:45

c) Ta có: BK=HC(cmt)

AB=AC(ΔABC cân tại A)

Do đó: \(\dfrac{BK}{AB}=\dfrac{CH}{AC}\)

Xét ΔABC có 

K\(\in\)AB(gt)

H\(\in\)AC(gt)

\(\dfrac{BK}{AB}=\dfrac{CH}{AC}\)(cmt)

Do đó: KH//BC(Định lí Ta lét đảo)