Định a để hàm số xác định với mọi x>0
\(y=\sqrt{x-a}+\sqrt{2x-a-1}\)
ĐỊnh a để hàm số sau xác định với mọi x > 2
\(y=\sqrt{2x-3a+4}+\dfrac{x-a}{x+a-1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x-3a+4\ge0\\x+a-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3a-4}{2}\\x\ne-a+1\end{matrix}\right.\)
Hàm xác định với mọi \(x>2\) khi:
\(\left\{{}\begin{matrix}\dfrac{3a-4}{2}< 2\\-a+1\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a< \dfrac{8}{3}\\a\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le a< \dfrac{8}{3}\)
Giá trị của m để hàm số `y=\sqrt{x-m}+\sqrt{2x-m+1}` xác định với mọi `x>0`
Định a để hàm số xác định với mọi x>0
\(y=\frac{x-a}{x+a-1}+\sqrt{2x-3a+4}\)
Hàm số y xác định khi: \(\hept{\begin{cases}x+a-1\ne0\\2x-3a+4\ge0\end{cases}}\)
Xét hàm số: \(y=2x-3a+4\), \(x\ge0.\)
Hàm số y = 2x - 3a + 4 có hệ số a = 2 > 0 nên đồng biên trên R.
f(0) = -3a + 4
Suy ra: \(f\left(x\right)>f\left(0\right)\)với mọi x dương.
Để \(f\left(x\right)\ge0,\)với mọi x dương thì \(f\left(0\right)\ge0\Leftrightarrow-3a+4\ge0\Leftrightarrow a\le\frac{3}{4}.\)(1)
Xét: \(x+a-1\ne0\Leftrightarrow x\ne1-a.\)
Để y xác định với mọi x dương thì \(1-a\le0\Leftrightarrow a\ge1.\)(2)
Kết hợp (1) và (2) ta nhận thấy không có a thỏa mãn.
1,Rút gọn
A=(\(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\))x(x-\(\dfrac{x-4}{\sqrt{x}-2}\))với x≥0;x≠4
2,Xác định a,b để đồ thị hàm số y=ax+b đi qua điểm A(2;1) vàB(1;2)
\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)
Xác định a để tập xác định của hàm số \(y=\sqrt{2x+a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1
ĐKXĐ: \(\left\{{}\begin{matrix}2x+a\ge0\\2a-1-x\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{a}{2}\le x\le2a-1\)
Miền xác định là đoạn có độ dài 1 khi:
\(2a-1-\left(-\dfrac{a}{2}\right)=1\)
\(\Rightarrow a=\dfrac{4}{5}\)
Bài 4. Xác định a để tập xác định của hàm số \(y=\sqrt{2x-a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1.
ĐKXĐ: \(\left\{{}\begin{matrix}2x-a\ge0\\2a-1-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{a}{2}\\x\le2a-1\end{matrix}\right.\)
Miền xác định là 1 đoạn có độ dài bằng 1 khi:
\(2a-1-\dfrac{a}{2}=1\Rightarrow a=\dfrac{4}{3}\)
a.\(y=\sqrt{x-m+2}+\sqrt{x-2m+3}\)
b.\(\sqrt{2x-4m+1}+\frac{x-2}{x-m+2}\)
Tìm m để hàm số x xác định với mọi x \(\in(0,+\infty)\)
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
Mọi người giúp mình câu này với
Định a để hàm số sau thỏa mãn với mọi x > 0
y = \(\sqrt{x-a}\)+ \(\sqrt{2x-a-1}\)
ĐK
\(\hept{\begin{cases}x\ge a\\2x-1\ge a\end{cases}}\)
\(3x-1\ge2a\)
\(a\le\frac{3x-1}{2}\)
Tìm ĐKXĐ
a,\(y=\sqrt{x+8+2\sqrt{x+7}}+\frac{1}{1-x}\)
b,\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
Tìm m để các hàm số sau xác định với mọi x thuộc khoảng \(\left(0;+\infty\right)\)
a,\(y=\sqrt{x-m}+\sqrt{2x-m-1}\)
b,\(y=\sqrt{2x-3m+4}+\frac{x-m}{x+m-1}\)