6x + ( 2 . 3 ) = 42
2(3-6x)+8(x+5)=42
2(3-6x)+8(x+5)=42
x3+6x2-13x-42
\(x^3+6x^2-13x-42\)
\(=x^2\left(x+7\right)-x\left(x+7\right)-6\left(x+7\right)\)
\(=\left(x^2-x-6\right)\left(x+7\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x+7\right)\)
x3+6x2−13x−42
x3+6x2−13x−42
=(x+7)(x−3)(x+2)
Tìm x
x^3 + 6x^2 - 13x - 42 = 0
\(x^3+6x^2-13x-42=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)+\left(9x^2-27x\right)+\left(14x-42\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)+9x\left(x-3\right)+14\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)+\left(x^2+9x+14\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+7x+2x+14\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[x\left(x+7\right)+2\left(x+7\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\x+2=0\\x+7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-2\\x=-7\end{array}\right.\)
x3 + 6x2 - 13x - 42 = 0
=> x3 - 3x2 + 9x2 - 27x + 14x - 42 = 0
=> x2 ( x - 3 ) + 9x ( x - 3 ) + 14 ( x - 3 ) = 0
=> ( x - 3 ) ( x2 + 9x + 14) = 0
=> ( x - 3 ) ( x2 + 2x + 7x + 14 ) = 0
=> ( x - 3 ) [ x ( x + 2 ) + 7 ( x + 2 ) ] = 0
=> ( x - 3 ) ( x + 2 ) ( x + 7 ) = 0
=> x - 3 = 0 => x = 3
=> x + 2 = 0 => x = -2
=> x + 7 = 0 => x = -7
Tìm x
a) 3*(2-6x)+8*(x-5)= -42
b) x+{(x+3)-[(x+3)-(-x-2)]} = x
tìm số tự nhiên x biết
a) ( 2600 +6400 ) -3 x X =1200
b) [ ( 6x X -72 ) : 2 -84 ] x 28 =5628
c) 2x -138 = 23 x 32
d) 42x =39 x 42 - 37 x 42
tìm số tự nhiên x biết
a) ( 2600 +6400 ) -3 x X =1200
b) [ ( 6x X -72 ) : 2 -84 ] x 28 =5628
c) 2x -138 = 23 x 32
d) 42x =39 x 42 - 37 x 42
\(x^3+6x^2-13x-42\)
Rút gọn biểu thức
Chắc là phân tích đa thức thành nhân tử hả bạn?
\(x^3+6x^2-13x-42\)
\(=x^3+2x^2+4x^2+8x-21x-42\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)-21\left(x+2\right)\)
\(=\left(x^2+4x-21\right)\left(x+2\right)\)
\(x^3+6x^2-13x-42\)
\(=x^3+2x^2+4x^2+8x-21x-42\)
\(=x^2\cdot\left(x+2\right)+4x\cdot\left(x+2\right)-21\left(x+2\right)\)
\(=\left(x+2\right)\cdot\left(x^2+4x-21\right)\)
\(=\left(x+2\right)\cdot\left(x^2+7x-3x-21\right)\)
\(=\left(x+2\right)\cdot\left(x\cdot\left(x+7\right)-3\left(x+7\right)\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+7\right)\)
Phân tích đa thức thành nhân tử:
1, x^3-x+y^3-4
2, 4x^2-y^2+4x+1
3, x^4+2x^3+x^2
4, x^2+5x-6
5, 7x-6x^2-2
6, 5x^2+5xy-x-y
7, 2x^2+3x-5
8,x^4-5x^2+4
9, x^3-5x^2+45-9x
10, x^4-2x^3-2x^2-2x-3
11, 81x^4+4
12,x^5+x+1
13, x^4+6x^3+7x^2-6x+1
14, x(x+4)(x+6)(x+10)+128
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)