Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Amy
Xem chi tiết
White Boy
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 10 2016 lúc 11:20

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được : 

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)

Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

Băng Dii~
24 tháng 10 2016 lúc 14:14

Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c 

Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y  , ta được : 

1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b 

1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c 

1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a 

Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )

⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b  ≥ 1 / a + 1 / b + 1 / c 

Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.

Hoàng Phú Huy
3 tháng 4 2018 lúc 8:40

Áp dụng BĐT  x 1 + y 1 ≥ x + y 4  , ta được :  a + b − c 1 + b + c − a 1 ≥ 2b 4 = b 2 b + c − a 1 + c + a − b 1 ≥ 2c 4 = c 2 a + b − c 1 + c + a − b 1 ≥ 2a 4 = a 2 Cộng các BĐT trên theo vế : 2 a + b − c 1 + b + c − a 1 + c + a − b 1 ≥ 2 a 1 + b 1 + c 1 ⇒ a + b − c 1 + b + c − a 1 + c + a − b 1 ≥ a 1 + b 1 + c 1 Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.\(Áp dụng BĐT  x 1 + y 1 ≥ x + y 4  , ta được :  a + b − c 1 + b + c − a 1 ≥ 2b 4 = b 2 b + c − a 1 + c + a − b 1 ≥ 2c 4 = c 2 a + b − c 1 + c + a − b 1 ≥ 2a 4 = a 2 Cộng các BĐT trên theo vế : 2 a + b − c 1 + b + c − a 1 + c + a − b 1 ≥ 2 a 1 + b 1 + c 1 ⇒ a + b − c 1 + b + c − a 1 + c + a − b 1 ≥ a 1 + b 1 + c 1 Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.\)

Bảo Ngọc
Xem chi tiết
Đinh Đức Hùng
24 tháng 3 2017 lúc 16:24

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{bc}{b+c}\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{b\left(a+c\right)}=\frac{abc}{a\left(b+c\right)}\)

\(\Rightarrow c\left(a+b\right)=b\left(a+c\right)\Leftrightarrow ac+bc=ab+bc\Rightarrow ac=ab\Rightarrow c=b\) (1)

\(\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Leftrightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow b=a\) (2)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)\Leftrightarrow ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\) (3)

Từ (1) ; (2) ; (3) => \(a=b=c\) (ĐPCM)

Minaka Laala
Xem chi tiết
Phùng Minh Quân
4 tháng 4 2018 lúc 19:22

Ta có : 

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\)\(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{a+a}{c+c}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta lại có : 

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b-a+b}{c+a-c+a}=\frac{b+b}{a+a}=\frac{2b}{2a}=\frac{b}{a}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(\frac{a}{c}=\frac{b}{a}\)\(\Rightarrow\)\(a.a=b.c\)\(\Rightarrow\)\(a^2=bc\)

Vậy từ \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) suy ra \(a^2=bc\)

Chúc bạn học tốt ~ 

Chị ơi Anh yêu em
4 tháng 4 2018 lúc 19:24

Có a+b/a-b = c+a/c-a

hay: (a+b) (c -a) = ( c + a)(a - b)

        ac - a^2 + bc - ab = ac - bc + a^2 - ab

<=>             2bc            =          2a^2

  =>               bc            =           a^2

Hoài Linh
Xem chi tiết
Dương Lam Hàng
1 tháng 9 2016 lúc 20:37

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\left(a+b\right).\left(c-a\right)=\left(a-b\right).\left(c+a\right)\)

=> \(bc-a^2-ab=a^2-bc-ab\)

=> \(2a^2=2bc\)

Triệt tiêu => \(a^2=bc\left(đpcm\right)\)

Vậy a2 = bc

CHÚC BẠN HỌC TỐT

Hoàng Tử Lớp Học
1 tháng 9 2016 lúc 20:33

nhân chéo lên nha bạn rút gọn ac ta đc  bc-a ^ 2 - ab= a ^ 2-bc-ab <=>2a ^ 2= 2bc <=> a ^ 2= bc=>ďpcm

thongocute
Xem chi tiết
Thanh Tùng DZ
2 tháng 8 2017 lúc 16:06

a) a2 = bc

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

b) a2 = bc

\(\Rightarrow\frac{a}{b}=\frac{c}{a}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{a^2}=\frac{a}{b}.\frac{c}{a}=\frac{c}{b}\)

\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)

Anna Vũ
Xem chi tiết
Pain Địa Ngục Đạo
20 tháng 3 2018 lúc 13:29

dự đoán của Thần thánh

\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)

\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)

áp dụng BDT cô si ta có

\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)

tương tự với các BDT còn lại suy ra

\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si ta có

\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)

tương tự với b^2+c^2 ta được

\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) 

" thay 1/3 vào ta được

\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)

mà \(a+b+c\ge3\sqrt[3]{abc}\) 

thay a+b+c=1 vào ta được

\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "

bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)

\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)

mà a+b+C=1 suy ra

\(A\ge\frac{9}{4}\) "2"

từ 1 và 2 suy ra

\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

" đúng với dự đoán của thần thánh "

Kuruishagi zero
Xem chi tiết
Hoàng tử của mít
3 tháng 11 2018 lúc 22:29

\(x.y=12\Rightarrow y=\frac{12}{x}\) thay vào pt ta có : 

\(\frac{x}{3}=\frac{12}{\frac{x}{4}}\)

\(\Leftrightarrow\frac{x}{3}=\frac{3}{x}\) \(\Leftrightarrow x^2=9\) \(\Rightarrow Th1:x=3\Rightarrow y=4\)

\(Th2:x=-3\Rightarrow y=-4\)

Nguyệt
3 tháng 11 2018 lúc 22:38

đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k,y=4k\)

ta có:

\(x.y=3k.4k=12.k^2=12\Rightarrow k^2=1\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

\(k=1\Rightarrow x=3.1=3,y=4.1=4\)

\(k=\left(-1\right)\Rightarrow x=3.\left(-1\right)=-3,y=4.\left(-1\right)=-4\)

vậy x=3,y=4 hay x=-3, y=-4

2.\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

từ (1) và (2) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(đpcm\right)\)

erza
Xem chi tiết
ST
30 tháng 9 2017 lúc 16:32

Câu 1:

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)

b,Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{b}{d}\cdot\frac{a}{c}\Rightarrow\frac{a^2}{b^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ac}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Ta lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Câu 2:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+....+a2018}\)

\(\Rightarrow\frac{a1}{a2}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2\right)\)

..............

\(\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2017\right)\)

Nhân các vế (1),(2)....(2017) ta được:

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\cdot\cdot\cdot\cdot\frac{a2017}{a2018}=\frac{a1}{a2018}=\left(\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\right)^{2017}\)

Vậy...

Câu 3:

\(x_2^2=x_1x_3\Rightarrow\frac{x1}{x2}=\frac{x2}{x3}\)

\(x_3^2=x_2x_4\Rightarrow\frac{x2}{x3}=\frac{x3}{x4}\)

\(x_4^2=x_3x_5\Rightarrow\frac{x3}{x4}=\frac{x4}{x5}\)

\(x_5^2=x_4x_6\Rightarrow\frac{x4}{x5}=\frac{x5}{x6}\)

Đến đây thfi làm giống câu 2

Trần Tân
18 tháng 6 2018 lúc 11:50

cho x1, x2 , x3 là 3 số thực khác 0 thỏa mãn x1 + x2 + x3 = a ; x1x2 + x2x3 + x1x3 = 0 ; x1x2x3 = b

CMR: a/b < 0