Giá trị của \(x< 0\)\
Thoả mãn \(x^2=2^4\)
1,Trung bình cộng các giá trị x thoả mãn 4(x-1)^2=x^2
2,Giá trị nhỏ nhất của x^2-2x-3
3,Tổng các giá trị x thoả mãn x^2-5x+4
Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)
\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)
Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)
Bài 2 : Đặt A = \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)
Dấu ''='' xảy ra <=> x = 1
Vậy GTNN A là -4 <=> x = 1
Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)
Tổng các giá trị x là : \(1+4=5\)
3, Tổng các giá trị của x thỏa mãn:
\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-4x-x+4=0\)
\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5
Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là
A. 0
B.- \(\dfrac{5}{2}\)
C. 3 hoặc -\(\dfrac{5}{2}\)
câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:
A. 1,5
B. 1,25
C. –1,25
D. 3
Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?
A. x = -3 hoặc x =1
B. x =3 hoặc x = -1
C. x = -3 hoặc x = -1 5
D. x =1 hoặc x = 3 Câu
25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :
A. –1,5
B. –2,5
C. –3,5
D. –4,5
Câu 26 Giá trị của x thoả mãn (x + 3)3 – x(3x+1)2 + (2x + 1)(4x2 – 2x + 1) = 28 là: A. 0
B. -8 \(\dfrac{2}{3}\)
C. 0 hoặc 8\(\dfrac{2}{3}\)
D. 0 hoặc -8\(\dfrac{2}{3}\)
Câu 28 Tứ giác ABCD có 𝐴̂ = 1200 ; 𝐵̂ = 800 ; 𝐶̂ = 1000 thì:
A. 𝐷̂ = 600
B. 𝐷̂ = 900
C. 𝐷̂ = 400
D. 𝐷̂ = 1000
Câu 29 Cho ΔABC có I, K lần lượt là trung điểm của AB và AC Biết BC = 20cm. Tacó:
A. IK = 40 cm.
B. IK = 10 cm.
C. IK=5 cm.
D. IK= 15 cm.
\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)
Giá trị x<0 thoả mãn x^4=6,25^2
x^4=6.25^2
\(\Leftrightarrow\)x=\(\sqrt{6.25}\)
\(\Leftrightarrow\)x=-2.5
1; Tập hợp các giá trị của x thoả mãn:/x+3/-5=0
2;giá trị nguyên dương của x thỏa mãn :/x-1/=-[x-1] là?
3;cho 2 số nguyên x;y thỏa mãn :/x/+/y=7,giá trị lớn nhất của x.y là?
4;giá trị lớn nhất của biểu thức : -3-/x+2/ là?
5;GTLN của biểu thức ; 15-[x-2]^2 là ?
giúp mình với . mình đang cần gấp nhé!
Tìm các giá trị của x để thoả mãn biểu thức:
A = (x - 1)(x - 2)(x - 3)(x - 4) < 0
lập bảng xét dấu, ta có
x | 1 2 3 4 |
x-1 | - 0 + + + + |
x-2 | - - 0 + + + |
x-3 | - - - 0 + + |
x-4 | - - - - 0 + |
(x-1)(x-2)(x-3)(x-4) | + 0 - 0 + 0 - 0 + |
vậyđể x thỏa mãn biểu thức thì:
1<x<2 hoặc3<x<4
Có bao nhiêu giá trị của x thoả mãn giá trị tuyệt đối (x-2)=x A 0 B 1 C2 D3 E4
Các giá trị của x thoả mãn x 2 - 3x + 2 = 0 là
Tính tổng giá trị nguyên âm của x thoả mãn : \(\dfrac{x^2+1}{x+50}>=0\)
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Giá trị của x thoả mãn: \(\left(x-2\right)\left(x^2+2x+4\right)+35=0\)
(x - 2)(x2 + 2x + 4) + 35 = 0
x3 - 8 + 35 = 0
x3 = 0 + 8 - 35
x3 = - 27
x = - 3