a) x \(\in B\left(15\right)va40\le x\le70\)
a) \(x\in B(6)va15< x\le54\)
b) \(x\in BC\left(5,8\right)va40\le x\le200\)
c) \(x\in UC\left(36,48\right)va4\le x< 20\)
d) \(x\in UC\left(18,36\right)va2\le x< 30\)
a) Ta có: \(x\in B\left(6\right);15< x\le54\)
\(\Rightarrow x\in\left\{18;24;30;36;42;48;54\right\}\)
b) Ta có: \(x\in BC\left(5;8\right);40\le x\le200\)
\(\Rightarrow x\in\left\{40;80;120;160;200\right\}\)
c) Ta có: \(x\inƯC\left(36;48\right);4\le x\le20\)
\(\Rightarrow x\in\left\{4;6;9;12\right\}\)
d) Ta có: \(x\inƯC\left(18,36\right);2\le x\le30\)
\(\Rightarrow x\in\left\{2;3;6;9;18\right\}\)
tìm các số tự nhiên x sao cho : \(x\in B\left(15\right)và40\le x\le70\)
Ta co : \(B\left(15\right)=\left\{0;15;30;45;60;75;90;....\right\}\)
Mà đề bài cho là :\(40\le x\le70\)
Nên ta loại các số \(0;15;30;75;90;......\)
Vậy : x=45 va 60
tìm các số nguyên x sao cho : \(x\in B\left(15\right)\) và \(40\le x\le70\)
B(15)={1;15:30;45;60;75;90...}
Mà đề bài cho 40 <hoac = x <hoac = 70
Nen cac số: 45;60 (thỏa mãn với đề bài )
Vay :x =45;60
Tìm x \(\in\)N sao cho a , x \(\in B\)( 15 ) và 40 \(\le x\le70\)
b) \(x⋮12\)và \(0< x\le30\)
c) \(6⋮\left(x-1\right)\)
Tìm các số tự nhiên \(x\) sao cho :
a) \(x\in B\left(15\right)\) và \(40\le x\le70\)
b) \(x⋮12\) và \(0< x\le30\)
c) \(x\in U\left(30\right)\) và \(x>12\)
d) \(8⋮x\)
a, \(x\in\left\{45;60\right\}\)
b, \(x\in\left\{12;24\right\}\)
c, \(x\in\left\{15;30\right\}\)
d, \(x\in\left\{1;2;4;8\right\}\)
Cho A = \(\left\{x\in R|1\le x\le5\right\}\), B = \(\left\{x\in R|4\le x\le7\right\}\), C = \(\left\{x\in R|2\le x\le6\right\}\)
a) Xác định \(A\cap B,A\cap C,B\cap C,A\cup C,\)A\\(\left(B\cup C\right)\)
b)Gọi D = \(\left\{x\in R|a\le x\le b\right\}\). Xác định a, b để \(D\subset A\cap B\cap C\)
Xác định các tập: \(A\cup B,A\cap B;A\backslash B;B\backslash A\)
a, \(A=\left\{x\in R|-3\le x\le5\right\};B==\left\{x\in R|\left|x\right|< 4\right\}\)
b, \(A=\left[1;5\right];B=\left(-3;2\right)\cup\left(3;7\right)\)
c, \(A=\left\{x\in R|\dfrac{1}{\left|x-1\right|}\ge2\right\};B=\left\{x\in R|\left|x-2\right|\le1\right\}\)
d, \(A=\left[0;2\right]\cup\left(4;6\right);B=(-5;0]\cup\left(3;5\right)\)
a, \(A\cup B=(-4;5]\)
\(A\cap B=[-3;4)\)
\(A\backslash B=\left[4;5\right]\)
\(B\backslash A=\left(-4;-3\right)\)
b, \(A\cup B=\left(-3;7\right)\)
\(A\cap B=[1;2)\cup(3;5]\)
\(A\backslash B=\left[2;3\right]\)
\(B\backslash A=\left(-3;1\right)\cup\left(5;7\right)\)
c, \(A\cup B=\left[\dfrac{1}{2};3\right]\)
\(A\cap B=\left[1;\dfrac{3}{2}\right]\)
\(A\backslash B=[\dfrac{1}{2};1)\)
\(B\backslash A=(\dfrac{3}{2};3]\)
d, \(A\cup B=(-5;2]\cup(3;6]\)
\(A\cap B=\left\{0\right\}\cup[4;5)\)
\(A\backslash B=(0;2]\cup\left[-5;6\right]\)
\(B\backslash A=[-5;0)\cup\left(3;4\right)\)
Cho các tập \(B=\left\{x\in\mathbb{R}\text{|}-5\le x\le5\right\};C=\left\{x\in\mathbb{R}\text{|}x\le a\right\};D=\left\{x\in\mathbb{R}\text{|}x\ge b\right\}\). Xác định a, b biết \(C\cap B,D\cap B\) lần lượt là các đoạn có độ dài lần lượt bằng 5 và 9.
\(C\cap B=[-5;a]\)
mà \(B=\left\{x\in R|-5\le x\le5\right\}\) có độ dài là \(\left|-5\right|+\left|5\right|=10\)
\(\Rightarrow C\cap B=[-5;a]\) có độ dài là \(5\) thì \(a=10:2-5=0\)
\(D\cap B=[b;5]\) có độ dài là 9 thì \(b=10:2-9=-4\)
Dùng các kí hiệu đoạn, khoảng, nửa khoảng để viết các tập hợp sau đây:
a) \(\left\{ {x \in \mathbb{R}|\; - 2 < x < 3} \right\}\)
b) \(\left\{ {x \in \mathbb{R}|\;1 \le x \le 10} \right\}\)
c) \(\left\{ {x \in \mathbb{R}|\; - 5 < x \le \sqrt 3 } \right\}\)
d) \(\left\{ {x \in \mathbb{R}|\;\pi \le x < 4} \right\}\)
e) \(\{ x \in \mathbb{R}|\;x < \frac{1}{4}\} \)
g) \(\{ x \in \mathbb{R}|\;x \ge \frac{\pi }{2}\} \)
a) Khoảng \(\left( { - 2;3} \right)\)
b) Đoạn \(\left[ {1;10} \right]\)
c) Nửa khoảng \(\left( {\left. { - 5;\sqrt 3 } \right]} \right.\)
d) Nửa khoảng \(\left. {\left[ {\pi ;4} \right.} \right)\)
e) Khoảng \(\left( { - \infty ;\frac{1}{4}} \right)\)
g) Nửa khoảng \(\left[ {\left. {\frac{\pi }{2}; + \infty } \right)} \right.\)