Chứng minh 0 không thuộc ƯCLN(a;b) ?
Chứng minh rằng:
ƯCLN(a,b)=ƯCLN(5a+2b,7a+3b) a, b thuộc N
*Nếu d thuộc ƯC(a,b)suy ra a chia hết cho d;b chia hết cho d .Suy ra 5a+2b,7a+3b chia hết cho d
*Nếu k thuộc ƯC (5a+2b;7a+3b)suy ra 5(7a+3b)-7(5a+2b)=35a+15b-35a-14b.b chia hết cho d
suy ra 3(5a+2b)-2(7a+3b)=15a+6b-14a-6b=a chia hết cho d
gọi UCLN(5a+2b;7a+3b)=d
=>5a+2b và 7a+3b chia hết cho d
=>5(7a+3b)-7(5a+2b)=35a+15b-35a-14b
=b chia hết cho d
=>3(5a+2b)-2(7a+3b)=15a+6b-14a-6b
=a chia hết cho d
vậy UCLN(a;b)=UCLN(5a+2b;7a+3b)
chứng minh: ƯCLN(k.a; k.b)=k.ƯCLN(a;b)
và chứng minh: ƯCLN( a;b;c)= ƯCLN( ƯCLN (a;b);c)= ƯCLN( ƯCLN (a;c);b)=ƯCLN( ƯCLN (b;c);a)
xin lỗi các bạn cố hỉu nhé giúp mk mai thi rồi
chứng minh tỉ lệ thức:a/b+c/d(a không thuộc 0,c không thuộc 0,d không thuộc 0,akhông thuộcb,c không thuộc d)
Cho a b, là số tự nhiên lẻ, b thuộc N . Chứng minh rằng ƯCLN(a ,ab+ 128) =1
Gọi d=ƯCLN(a,ab+128)d=ƯCLN(a,ab+128)
⇒{a⋮dab+128⋮d⇒128⋮d
⇒d∈{1;2;4;8;16;32;64;128}
Mà a,b lẻ nên d lẻ
Do đó d=1(đpcm)
cho mik sửa lại, cái nãy lỗi:
Gọi d=ƯCLN(a,ab+128)
⇒⎧⎨⎩a⋮dab+128⋮d⇒128⋮d⇒d∈{1;2;4;8;16;32;64;128}
Mà a,b lẻ nên d lẻ
Do đó d=1(đpcm)
Các bạn giúp mình với
a) Chứng minh rằng ƯCLN ( 5n+1; 6n+1 ) =1 ; n thuộc tập tự nhiên
b) Tìm ƯCLN (2n+1 ; 9n +6) ; n thuộc tập tự nhiên
MÌNH CẢM ƠN Ạ!!!
Cho a , b , c thuộc N , đôi 1 nguyên tố cùng nhau . Chứng minh rằng ƯCLN ( ab + bc + ac , abc ) = 1
Chứng minh rằng ƯCLN (9N+11,5n+)=1 với n thuộc N
Cho hai số tự nhiên a và b ( a>b)
A) Chứng minh rằng nếu a chia hết cho b thì ( a,b)=b
B) Chứng minh rằng nếu a không chia hết cho b thì ƯCLN của hai số bằng ƯCLN của số nhỏ và số dưtrong phép chia số lớn cho số nhỏ
c)Dùng các nhận xét trên để tìm ƯCLN(72,56)
Giải:a) mọi ước chung của a và b hiển nhiên là ước của b . Đảo lại, do a chia hết cho b nen b là ước của a và b . Vậy ( a,b)=b
B) Gọi r là số dư trong phép chia a cho b ( a>b). . Ta có a=bk+r(k thuộc N) cần chứng minh rằng ( a, b) = (b,r). Thật vậy ,nếu a và b Cùng chia hết cho d thì r chia hết cho d, do đó ước chung của a và b cũng là ước chung của d và r(1) . Đảo lại nếu nếu b và r cùng chia hết cho d thì a chia hết cho d, do đó ước chung của d và r cũng là ước chung của a và b(2) . Từ (1) và(2) suy ra tập hợp các ước chung của a và b và tập hợp các ước chung của d và r bằng nhau . Do đó hai số lớn nhất trong hai tập hợp bằng nhau, tức là (a,b)=(b,r).
C)72 chia 56 dư 16 nên (72,56)=(56,16)
56 chia 16 dư8 nên ( 56,16)=(16,8)
Mà 16 chia hết cho 8 nên (16,8)=8
Các bạn ơi mình làm đúng 100% k mình nha kẻo mình tốn công viết
Chứng minh rằng:
Tích của a và b bằng ƯCLN (a, b) nhân với BCNN (a, b)
(Với a, b thuộc N*)