chứng tỏ rằng:
a) ab+ba chia hết cho 11;
b,abc-bca chia hết cho 9
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng tỏ rằng a+b chia hết cho 2
chứng tỏ rằng ab+ba chia hết cho 11
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm
chứng tỏ ab+ba chia hết cho 11
ab+ba=10a+b+10b+a=(10a+a)+(10b+b)=11(a+b)⋮11
\(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
Chúc bạn học tốt
chứng tỏ ab+ba chia hết cho 11
Chứng tỏ rằng:
a)ab-ba chia hết cho 9
b)Nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
chứng tỏ
a/ ab +ba chia hết cho 11
b/ ba-ab chia hết cho 9 (b>a)
a.Ta có:ab+ba=a.10+b + b.10+a=a(10+1) + b(10 +1) = a.11+b.11=11(a+b)
=> ab+ba chia hết cho 11
b.Ta có:ba-ab=(b.10+a)-(a.10+b)=b.10 + a - a.10-b=b(10-1) - a(10-1)=b.9 - a.9=9(b-a)
=>ba-ab chia hết cho 9
a) Chứng tỏ rằng a b ¯ + b a ¯ chia hết cho 11.
chứng tỏ ab +ba chia hết cho 11
ab+ba
= 10a+b+10b+a
= 11a+11b
= 11(a+b) chia hết cho 11
=> ab+ba chia hết cho 11
VD:a=1;b=2
vậy 12+21=33 thì 33 chia hết cho 11
Ta có:
ab+ba
a0+b+b0+a
aa+bb
aa chia hết cho 11 và bb cũng chia hết cho 11 nên ab+ba chia hết cho 11.