Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ninh Nam
Xem chi tiết
Trần Hoàng Phương Anh
Xem chi tiết
Nguyễn Linh Anh
Xem chi tiết
Đặng Phương Thảo
13 tháng 7 2015 lúc 8:40

bạn đăng từng bài lên 1 đi

mik giải dần cho

phung thi hang
30 tháng 1 2017 lúc 7:15

dễ mà bn

Luu Kim Huyen
22 tháng 2 2017 lúc 11:43

Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.

a) Chứng minh AE là phân giác góc CAB

b) Chứng minh AD là trung trực của CD

c) So sánh CD và BC

d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.

Nguyễn Diệu Anh
Xem chi tiết
Nguyễn Thái Thịnh
31 tháng 1 2022 lúc 18:46

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{ABD}=\widehat{ACE}\)

\(BD=CE\) (giả thiết)

\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta ADE\) cân tại \(A\)

b) Vì \(\Delta ADE\) cân tại \(A\)

\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)

Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)

Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)

Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

\(\Rightarrow\Delta BIC\) cân tại \(I\)

c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:

\(AB=AC\) (giả thiết)

\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))

\(AI\) là cạnh chung

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)

\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)

Phạm Xuân Sơn
Xem chi tiết
chuột nhà
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
lê viết sang
24 tháng 7 2021 lúc 20:58

Gọi K là giao điểm của DN và BE
Ta có :
ΔBKD vuông tại K có:
^BDK + ^DBK = 90 độ (1)
ΔABC vuông tại A có:
^ABE + ^BEA = 90 độ (2)
Từ (1) và (2)
=> ^BDK = ^BEA = ^IDA (vì BDK và IDA là 2 góc đối đỉnh)
Xét Δ DAI vuông tại A và Δ EAB vuông tại A có:
AD = AE (gt)
^IDA = ^BEA (cmt)
==> Δ DAI = Δ EAB (cạnh góc vuông và góc nhọn kề)
=> AI = AB = AC (2 cạnh tương ứng)
=> A là trung điểm của CI (đpcm)

Khách vãng lai đã xóa
lê viết sang
25 tháng 7 2021 lúc 15:17

b) Gọi H là giao điểm của AM và BE
Có :
IK _|_ BE (gt)
AH _|_ BE (gt)
=> IK // AH
hay : IN // AM
Mà :
AI = IC (câu a)
=> MN = MC (hệ quả của tính chất đường trung bình trong tam giác)
Vậy MN = MC

Khách vãng lai đã xóa
Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 9:40

a; Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

hay \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

Lưu Nguyễn Hải Ninh
Xem chi tiết
Lưu Nguyễn Hải Ninh
7 tháng 7 2023 lúc 21:12

mn ơi giúp mình với mai nộp òi