Tính nhanh
1 1/98-1 1/97+ 1/97+98
Tính nhanh
1/100 - 1/ 100 . 99 - 1/99 . 98 - 1/ 97 .98 - 1/ 97 .98 - ..- 1/ 3.2 - 1/2.1
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
tính nhanh C=1/100 -1/99 . 98-1/98 . 97-1/97 . 96-...-1/3.2-1/2.1
So sánh
A=97^98+1/ 97^99+1 va B=97^97+1/ 97^98+1
Ta có: \(A=\frac{97^{98}+1}{97^{99}+1}\Rightarrow97A=\frac{97^{99}+97}{97^{99}+1}=\frac{97^{99}+1+96}{97^{99}+1}=1+\frac{96}{97^{99}+1}\)
\(B=\frac{97^{97}+1}{97^{98}+1}\Rightarrow97B=\frac{97^{98}+97}{97^{98}+1}=\frac{97^{98}+1+96}{97^{98}+1}=1+\frac{96}{97^{98}+1}\)
Vì \(\frac{96}{97^{99}+1}< \frac{96}{97^{98}+1}\Rightarrow1+\frac{96}{97^{99}+1}< 1+\frac{96}{97^{98}+1}\Rightarrow97A< 97B\Rightarrow A< B\)
Vậy A < B
Ta thấy A < 1 và 96 > 1 nên ta có:
A < 9798 + 1 + 96 / 9799 + 1 + 96
=> A < 9798 + 97 / 9799 + 97
=> A < 97(9797 + 1) / 97(9798 + 1)
=> A < 9797 + 1 / 9798 + 1 = B
=> A < B
Tính
1 : 99/100: 98/97 : 97/98 : ... : 3/4 : 2/3 : 1/2
cho B=1*98+2*97+3*6+..+2*97+1*98/1*2+2*3+3*4+97*98+98*99
1+ 99/98 -98/97+ 1/97*98
\(1+\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}\)
\(=1+1+\frac{1}{98}-\left(1+\frac{1}{97}\right)+\frac{1}{97}-\frac{1}{98}\)
\(=1+1+\frac{1}{98}-1-\frac{1}{97}+\frac{1}{97}-\frac{1}{98}\)
\(=1+1-1\)
\(=1\)
99/98 - 98/97 + 1/97*98
\(\frac{99}{98}-\frac{98}{97}+\frac{1}{97\times98}\)
\(=\left(1+\frac{1}{98}\right)-\left(1+\frac{1}{97}\right)+\frac{1}{97\times98}\)
\(=\frac{1}{98}-\frac{1}{97}+\frac{1}{97\times98}\)
\(=\frac{-1}{97\times98}+\frac{1}{97\times98}\)
\(=0\)
\(\frac{99}{98}-\frac{98}{97}+\frac{1}{97X98}=\left(1+\frac{1}{98}\right)-\left(1+\frac{1}{97}\right)+\frac{1}{97X98}\)
\(=\frac{1}{97X98}-\frac{1}{97X98}=0\)
Nguyễn tuấn thảo ơi người ta mới lớp 5 bạn thêm -1 vào chi ? :)
Tính: 1+ ( 1+ 2)+ ( 1+ 2+ 3) +.....+ ( 1+ 2+....+98)/ 1. 98+ 2. 97+ 3. 96+....+ 98. 1
tử có 98 số 1 = 98.1
97 số 2= 98.2
.....
1 số 98 = 1.98 cộng tất cả lại bằng mẫu nên kết quả =1
Tính nhanh hộ mình câu này với :
1+3+6+10+...+4851/1*98+2*97+3*96+...+97*2+98*1
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+...+98\right)}{1.98+2.97+3.96+...+97.2+98.1}\)
\(A=\frac{1.98+2.97+3.96+...+98.1}{1.98+2.97+3.96+...+98.1}=1\)