Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khổng Nguyên Trang
Xem chi tiết
Nam MC
9 tháng 4 2022 lúc 10:14

1/

2 Mình ko bít làm nha

Khách vãng lai đã xóa
Loc Xuan
Xem chi tiết
Nguyễn Thiều Công Thành
13 tháng 9 2017 lúc 22:27

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)

Ruby Châu
Xem chi tiết
Hoàng Anh
Xem chi tiết
Gia An Ho
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 11:20

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

Phạm Hồng Phúc
Xem chi tiết
Minh Hiếu
Xem chi tiết
Minh Hiếu
24 tháng 2 2022 lúc 20:35

Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha

Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)

 
Nguyễn Hoàng Minh
24 tháng 2 2022 lúc 21:28

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)

Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)

\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$

❤Firei_Star❤
Xem chi tiết
Nguyệt
20 tháng 10 2018 lúc 21:21

\(ab=\frac{a}{b}\)

\(a+b=ab=>ab-a-b=0\)

\(ab-b=a\)

\(b.\left(a-1\right)=a\)

\(\frac{a}{b}=a-1\)

Nguyễn Tài Tuệ
Xem chi tiết
Oxytocin
5 tháng 7 2023 lúc 17:09

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)