Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MINH LÊ ĐÌNH
Xem chi tiết
MINH LÊ ĐÌNH
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 4 2022 lúc 16:15

-Áp dụng BĐT trong tam giác ta có:

\(AG+BG>AB;BG+CG>BC;CG+AG>CA\)

-Cộng các vế với nhau ta được:

\(2\left(AG+BG+CG\right)>AB+AC+BC\)

\(\Rightarrow2.\dfrac{2}{3}\left(AE+BF+CD\right)>AB+AC+BC\)

\(\Rightarrow AE+BF+CD>\dfrac{3}{4}AB+AC+BC\)

 

 

 

 

 

Lê Gia Huy
Xem chi tiết
Nguyễn Văn A
Xem chi tiết
meme
1 tháng 9 2023 lúc 14:03

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

Ngô Gia Bảo
Xem chi tiết
Nguyễn Đăng Khoa
Xem chi tiết
Vô Danh
Xem chi tiết
Lương Thanh Thảo
Xem chi tiết
Nguyễn Xuân Trường Kiên
5 tháng 6 2017 lúc 7:44

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:35

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

Tú Hàn Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2017 lúc 8:17

Ký hiệu: 

AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có

Xét hai t/g vuông AHC và ABC có

\(\widehat{C}\)chung

\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))

=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)

Xét t/g vuông ABC có

\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)

\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)

\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)

\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)

=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h

Nguyễn Ngọc Anh Minh
15 tháng 8 2017 lúc 8:18

Sorry!!!

Phần ký hiệu sửa thành 

Đường cao AH=h