Phân tích đa thức thành nhân tử:
x4 + 2x3y - 2x2y2 + 11xy3 - 6y4
Toán vận dụng: phân tích đa thức: x4-y4+2x3y-2xy3 thành nhân tử (x+y).(x2-y2)
\(x^4-y^4+2x^3y-2xy^3\)
\(=\left(x^2+y^2\right)\left(x^2-y^2\right)+2xy\left(x^2-y^2\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2+2xy\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x+y\right)^2\)
\(=\left(x-y\right)\left(x+y\right)^3\)
\(x^4-y^4+2x^3y-2xy^3\\ =\left(x^2\right)^2-\left(y^2\right)^2+2xy\left(x^2-y^2\right)\\ =\left(x^2-y^2\right)\left(x^2+y^2\right)+2xy\left(x^2-y^2\right)\\ =\left(x^2-y^2\right)\left(x^2+y^2+2xy\right)\\ =\left(x-y\right)\left(x+y\right)\left(x+y\right)^2\\ =\left(x-y\right)\left(x+y\right)^3\)
phân tích đa thức thành nhân tử: 2x3y-2xy3-4xy2-2xy
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
Phân tích đa thức 2x3y – 2xy3 – 4xy2 – 2xy thành nhân tử.
2x3y – 2xy3 – 4xy2 – 2xy
= 2xy(x2 - y2 - 2y - 1)
= 2xy[x2 - (y2 + 2y + 1)]
= 2xy[x2 - (y + 1)2 ]
= 2xy(x + y + 1)(x - y - 1)
Phân tích đa thức 2 x 3 y – 2 x y 3 – 4 x y 2 – 2 x y thành nhân tử ta được
A. 2xy(x – y – 1)(x + y + 1)
B. 2xy(x – y – 1)(x + y – 1)
C. xy(x – y – 1)(x + y + 1)
D. 2xy(x – y – 1)(x – y + 1)
2 x 3 y – 2 x y 3 – 4 x y 2 – 2 x y = 2 x y ( x 2 – y 2 – 2 y – 1 ) = 2 x y [ x 2 – ( y 2 + 2 y + 1 ) ] = 2 x y [ x 2 – ( y + 1 ) 2 ]
= 2xy(x – y – 1)(x + y + 1)
Đáp án cần chọn là: A
Bài 1: Phân tích các đa thức sau thành nhân tử bằng phương pháp đặt nhân tử chung
a) x3+3x b)9x2-6x
c)5y10+15y6 d) x4y-2x2y2+5xy
giúp mình với, mình cần gấppppppppppppp
a) \(x^3+3x=x\left(x+3\right)\)
b) \(9x^2-6x=3x\left(3x-2\right)\)
c) \(5y^{10}+15y^6=5y^6\left(y^4+3\right)\)
d) \(x^4y-2x^2y^2+5xy=xy\left(x^3-2xy+5\right)\)
phân tích đa thức thành nhân tử
x4+4
x4+4 = (x2)2+22 = x4 + 2.x2.2 + 4 – 4x2
= (x2 + 2)2 – (2x)2 = (x2-2x+2)(x2+2x+2)
Ta có: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
phân tích đa thức thành nhân tử: x4 +x2y2+y4
x⁴ + x²y² +y⁴
= (x²)² + x²y² + (y²)²
= (x²)² + x²y² + (y²)² + x²y² - x²y²
= (x²)² + 2 x²y² + (y²)² - x²y²
= (x² + y²)²- (xy)²
=(x² + y² + xy)(x² + y² - xy)
Phân tích đa thức sau thành nhân tử: x4 + 4
x4 + 4
= (x2)2 + 22
= x4 + 2.x2.2 + 4 – 4x2
(Thêm bớt 2.x2.2 để có HĐT (1))
= (x2 + 2)2 – (2x)2
(Xuất hiện HĐT (3))
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Phân tích đa thức sau thành nhân tử: x4 – 2x2
x4 – 2x2
(Có x2 là nhân tử chung)
= x2(x2 – 2)
Phân tích đa thức thành nhân tử: x 4 - 5 x 2 + 4
x 4 - 5 x 2 + 4 = x 4 - 4 x 2 - x 2 + 4 = x 4 - 4 x 2 - x 2 - 4 = x 2 x 2 - 4 - x 2 - 4 = x 2 - 4 x 2 - 1 = x + 2 x - 2 x + 1 x - 1