\(sosanh\frac{99}{-100}va`\frac{-102}{101}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)
phân số nào lớn nhất:
\(\frac{99}{100}\),\(\frac{100}{101}\),\(\frac{101}{102}\)
99/100<100/101<101/102
theo mình, có kết quả như vậy vì:
các tử đều cách mẫu 1 đơn vị
mẫu càng lớn thì 1 đơn vị càng nhỏ, nhưng khi tử cách mẫu 1 đơn vị, tức là rất sát sao lúc đó, phân số sẽ lớn
đó là cách suy luận
cách khác:
khoảng cách các phân số đó với 1 là:
1 - 99/100 = 1/100, 1 - 100/101 = 1/101, 1 - 101/102 = 1/102
khoảng cách càng nhỏ thì phân số càng lớn
ta so sánh các khoảng cách:
1/100 > 1/101 > 1/102
như vậy đủ thấy kết quả minh đưa ra ban đầu là đúng
tk nha bạn
thank you bạn
99/100=0,99
100/101=0,9900
101/102=0,9901960784313
=> 101/102 là phân số lớn nhất
kick mik nha bạn
\(\frac{10}{11}x\frac{12}{13}:\frac{50}{51}-\frac{19}{20}x\frac{12}{13}:\frac{101}{102}+\frac{99}{100}\)
Chứng tỏ rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
Bạn tham khảo tại link : https://olm.vn/hoi-dap/detail/205275532692.html
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}\) = \(\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\) giai phuong trinh do ae giup mik vs nhe
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\frac{x-5}{100}-1+\frac{x-4}{101}-1+\frac{x-3}{102}-1=\frac{x-100}{5}-1+\frac{x-101}{4}-1+\frac{x-102}{3}-1\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
Nhận thấy: \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\)
=> \(x-105=0\)
<=> \(x=105\)
\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}-\frac{x-100}{5}-\frac{x-101}{4}-\frac{x-102}{3}=0\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)-\left(\frac{x-100}{5}-1\right)-\left(\frac{x-101}{4}-1\right)-\left(\frac{x-102}{3}-1\right)=0\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}-\frac{x-105}{5}-\frac{x-105}{4}-\frac{x-105}{3}=0\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-105=0\left(Vì\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
\(\Leftrightarrow x=105\)
so sánh
\(\frac{100}{10^{11}}+\frac{100}{10^{12}}va\frac{99}{10^{11}}+\frac{101}{10^{12}}\)
\(\frac{10^{10}+1}{10^{11}+1}va\frac{10^{11}+1}{10^{12}+1}\)
s2 Lắc Lư s2 cko hỏi ôg lp mấy z?
\(\frac{x-1}{101}+\frac{x+1}{99}=\frac{x-2}{102}+\frac{x+3}{97} \)