giải phương trình: x(x+1)(x+2)(x+3)=24
Giải phương trình: x(x+1)(x+2)(x+3)=24
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=24\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=24\)
Dat \(x^2+3x+2=a\left(a>0\right)\)
\(\Leftrightarrow\left(a-2\right)a=24\)
\(\Leftrightarrow a^2-2a-24=0\)
\(\Leftrightarrow a^2-6a+4a-24=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+4\right)=0\\ \left[{}\begin{matrix}a=6\\a=-4\left(Loai\right)\end{matrix}\right.\)
Thay a=6:
\(x^2-3x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vayy...
\(x(x+1)(x+2)(x+3)=24\)
\(\Leftrightarrow[x(x+3)][(x+1)(x+2)]-24=0 \)
\(\Leftrightarrow(x^2+3x)(x^2+3x+2)-24=0\)
\(\Leftrightarrow[(x^2+3x+1)-1][(x^2+3x+1)+1]-24=0\)
Đặt \(a=x^2+3x+1\)
\(\Leftrightarrow(a-1)(a+1)-24=0\)
\(\Leftrightarrow (a^2-1)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow(a-5)(a+5)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-5=0\\a+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=5\\x^2+3x+1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\left(vn\right)\end{matrix}\right.\\ \Leftrightarrow x\left(x+3\right)-4=0\\ \Leftrightarrow x\left(x+3\right)=4\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x+3=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm pt \(S=\{-1;4\}\).
x(x+1)(x+2)(x+3)=24
<=>(x2+3x)(x2+3x+2)=24
<=>(x2+3x)2+2(x2+3x)+1=25
<=>(x2+3x+1)2=52=(-5)2
<=> x2+3x+1=5 hoặc x2+3x+1=-5
<=>x2+3x-4=0 hoặc x2+3x+6=0(vô nghiệm)
<=>x=1 hoặc x=-4
Vậy S = {1;-4}
giải phương trình: ( x + 1)(x + 2)( x + 3)( x + 4) = 24
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
<=> \(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=2\)
<=> \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt: \(x^2+5x+4=t\) ta có phương trình:
\(t\left(t+2\right)=24\)
<=> \(t^2+2t-24=0\)
<=> t = 4 hoặc t = -6
Với t = 4 ta có: \(x^2+5x+4=4\)<=> x = 0 hoặc x = - 5
Với t = - 6 ta có: \(x^2+5x+4=-6\) phương trình vô nghiệm
Vậy x = 0 hoặc x = -5
[(x+1).(x+4].[(x+2).(x+3)] =24
<-> (x2+4X+X+4).(x2+3x+2x+6)=24
<-> (x2+5x+4).(x2+5x+6)=24
đặt x2+5x+4=a
<-> a.(a+2)=24
<-> a2+2a-24+0
ta có \(\Delta\)= 22-4.1.(-24)
=4+96
=100 >0
-> \(\sqrt{\Delta}\)=\(\sqrt{100}\)=10
=> pt có 2 nghiệm pb
x1= \(\frac{2+10}{2}\)=6
x2=\(\frac{2-10}{2}\)=-4
giải phương trình:
(x+1)(x+2)(x+3)(x+4)= 24
Xét tích (x+1)(x+2)(x+3)(x+4) là tích của 4 số tự nhiên liên tiếp.
Mà ta thấy 24 = 1 . 2 . 3 . 4
Vậy x + 1 = 1 ; x + 2 = 2 ; x + 3 = 3 ; x + 4 = 4
Do đó x = 0
(x+1)(x+2)(x+3)(x+4)= 24
<=> (x+1)(x+2)(x+3)(x+4)-24=0
<=>(x+1)(x+4)(x+2)(x+3)-24=0
<=>(x2+5x+4)(x2+5x+6)-24=0
Đặt t=x2+5x+4 ta được:
t.(t+2)-24=0
<=>t2+2t-24=0
<=>t2-4t+6t-24=0
<=>t.(t-4)+6.(t-4)=0
<=>(t-4)(t+6)=0
<=>t-4=0 hoặc t+6=0
thay t=x2+5x+4 ta được:
x2+5x=0 hoặc x2+5x+10=0
Vì x2+5x+10=x2+2.x.5/2+25/4+15/4
=(x+5/2)2+15/4>0
nên
x2+5x=0
<=>x.(x+5)=0
<=>x=0 hoặc x=-5
(x-1)(x-2)(x+3)(x+4)=24
giải phương trình
\(\left(x-1\right)\left(x-2\right)\left(x+3\right)\left(x+4\right)=24\)\(\left(đkxđ:x\ne1;2;-3;-4\right)\)
\(< =>\left(x^2+2x-8\right)\left(x^2+2x-3\right)=24\)
Đặt \(x^2+2x=u\)thì phương trình trở thành :
\(\left(u-8\right)\left(u-3\right)=24\)
\(< =>u^2-11u=0\)
\(< =>u\left(u-11\right)=0\)
\(< =>\orbr{\begin{cases}u=0\\u=11\end{cases}}\)
Với \(u=0\)thì \(x^2+2x=0\)\(< =>\orbr{\begin{cases}x=0\\x=-2\end{cases}\left(tmđkxđ\right)}\)
Với \(u=11\)thì \(x^2+2x-11=0< =>\orbr{\begin{cases}-1-2\sqrt{3}\\-1+2\sqrt{3}\end{cases}}\left(tmđkxđ\right)\)(giải delta)
Vậy tập nghiệm của phương trình trên là \(\left\{0;-2;-1-2\sqrt{3};-1+2\sqrt{3}\right\}\)
Giải phương trình
(x+1)(x+2)(x+3)(x+4)-24=0
(x+1).(x+2).(x+3).(x+4) - 24 = 0
(x2 + 5x + 4).(x2 + 5x + 6) - 24 = 0
(x2 + 5x + 5-1).(x2 + 5x + 5 + 1) - 24 = 0
(x2 + 5x + 5)2 - 1 - 24 = 0
(x2 + 5x + 5 - 5).(x2 + 5x + 5 + 5) = 0
x.(x+5) .(x2 + 5x + 10) = 0
=> x = 0
x+ 5 = 0 => x = -5
\(x^2+5x+10>0\)
KL:..
(x+1)(x+2)(x+3)(x+4) - 24 = 0
<=> [(x+1)(x+4)][(x+2)(x+3)] - 24 =0
<=> (x^2+4x+x+4)(x^2+3x+2x+6) - 24 = 0
<=> (x^2+5x+4)(x^2+5x+6) - 24 = 0
Đặt x^2+5x+5 = a, ta có
(a-1)(a+1) - 24 = 0
<=> a^2 - 1 - 24 = 0
<=> a^2 - 25 =0
<=> a = 5
hay x^2 + 5x + 5 = 5
<=> x(x+5) = 5 - 5 = 0
<=> x=0 hoặc x+5 = 0 <=> x= -5
Vậy tập ngh của p.tr là S = { 0; -5 }
giải bất phương trình (x+1)*(x+2)*(x+3)*(x+4)=24
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(t=x^2+5x+4\)ta đc:
\(t\left(t+2\right)-24=0\)\(\Leftrightarrow t^2-4t+6t-24=0\)
\(\Leftrightarrow t\left(t-4\right)+6\left(t-4\right)=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t=-6\\t=4\end{cases}}\)
Với \(t=-6\Rightarrow x^2+5x+4=-6\)\(\Rightarrow x^2+5x+10=0\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\left(loai\right)\)
Với \(t=4\Rightarrow x^2+5x+4=4\)\(\Rightarrow x\left(x+5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Chứng minh một số có tổng các chữ số là 2015 thì không phải là số chính phương.
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
giải các bất phương trình sau
1, 2 ( -2x+1) ≤ -x+3
2, 2( x+1) ≤ -x+3
3, 5-3(x-1) >2
4, \(x^2-12x+3-\left(x-3\right)^2>0\)
1.
$2(-2x+1)\leq -x+3$
$\Leftrightarrow -4x+2\leq -x+3$
$\Leftrightarrow -1\leq 3x$
$\Leftrightarrow x\geq \frac{-1}{3}$
2.
$2(x+1)\leq -x+3$
$\Leftrightarrow 2x+2\leq -x+3$
$\Leftrightarrow 3x\leq 1$
$\Leftrightarrow x\leq \frac{1}{3}$
3.
$5-3(x-1)>2$
$\Leftrightarrow 5-(3x-3)>2$
$\Leftrightarrow 8-3x>2$
$\Leftrightarrow 8-3x-2>0$
$\Leftrightarrow 6-3x>0$
$\Leftrightarrow 6>3x$
$\Leftrightarrow x< 2$
4.
$x^2-12x+3-(x-3)^2>0$
$\Leftrightarrow x^2-12x+3-(x^2-6x+9)>0$
$\Leftrightarrow -6x-6>0$
$\Leftrightarrow -6>6x$
$\Leftrightarrow x< -1$
1: Ta có: \(2\left(-2x+1\right)\le-x+3\)
\(\Leftrightarrow-4x+x\le3-2=1\)
\(\Leftrightarrow x\ge-\dfrac{1}{3}\)
3: Ta có: \(5-3\left(x-1\right)>2\)
\(\Leftrightarrow3\left(x-1\right)< 3\)
\(\Leftrightarrow x-1< 1\)
hay x<2
Giải các phương trình sau:
|x^2-5x-6|=x^2+x-24
|x-1|-2|x-2|+3|x-3|=4
1, \(_{\left|x^2-5x-6\right|=x^2+x-24}\) (1)
Điều kiện \(x^2+x-24\ge0\) <=> \(\orbr{\begin{cases}x\ge\frac{-1+\sqrt{97}}{2}\\x\le\frac{-1-\sqrt{97}}{2}\end{cases}}\)
Khi đó (1) <=> \(\orbr{\begin{cases}x^2-5x-6=x^2+x-24\\x^2-5x-6=-x^2-x+24\end{cases}}\)
<=> \(\orbr{\begin{cases}-6x=-18\\2x^2-4x-30=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x^2-2x-15=0\end{cases}}\)
<=> \(x\in\left\{-3;3;5\right\}\)
Loại 2 giá trị x = -3 và x = 3 do ko t/m đk bên trên, ta đc x = 5 là nghiệm duy nhất của pt
Vậy tập nghiệm của pt là S = {5}
|x^2-5x-6|=x^2+x-24
=>x= 5
|x-1|-2|x-2|+3|x-3|=4
=> x= 5 hoac bang 1
\(|x-1|-2|x-2|+3|x-3|=4\)
Lập bảng xét dấu :
x | 1 | 2 | 3 | ||||
x-1 | - | 0 | + | \(|\) | + | \(|\) | + |
x-2 | - | \(|\) | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | \(|\) | - | 0 | + |
+) Nếu \(x\le1\) thì \(|x-1|=1-x\)
\(|x-2|=2-x\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(1-x\right)-2\left(2-x\right)+3\left(3-x\right)=4\)
\(\Leftrightarrow1-x-4+2x+9-3x=4\)
\(\Leftrightarrow6-2x=4\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\left(tm\right)\)
+) Nếu \(1< x\le2\) thì \(|x-1|=x-1\)
\(|x-2|=2-x\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(x-1\right)-2\left(2-x\right)+3\left(3-x\right)=4\)
\(\Leftrightarrow x-1-4+2x+9-3x=4\)
\(\Leftrightarrow4=4\) ( luôn đúng )
\(\Rightarrow\) Phương trình có nghiệm đúng với mọi x
+) Nếu \(2< x\le3\) thì \(|x-1|=x-1\)
\(|x-2|=x-2\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(x-1\right)-2\left(x-2\right)+3\left(3-x\right)=4\)
\(\Leftrightarrow x-1-2x+4+9-3x=4\)
\(\Leftrightarrow-4x+12=4\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) ( loại )
+) Nếu \(x>3\) thì \(|x-1|=x-1\)
\(|x-2|=x-2\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(x-1\right)-2\left(x-2\right)+3\left(x-3\right)=4\)
\(\Leftrightarrow x-1-2x+4+3x-9=4\)
\(\Leftrightarrow2x-6=4\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy ...