CHO CÁC ĐA THỨC :
\(f\left(x\right)=5x^4+3x^2+x-1;h\left(x\right)=-x^4+3x^3-2x^2-x+2\)
\(g\left(x\right)=2x^4-x^3+x^2+2x+1\)
HỎI ĐA THỨC \(f\left(x\right)+h\left(x\right)-g\left(x\right)\)=?
CHO CÁC ĐA THỨC :
\(f\left(x\right)=5x^4+3x^2+x-1;h\left(x\right)=-x^4+3x^3-2x^2-x+2\)
\(g\left(x\right)=2x^4-x^3+x^2+2x+1\)
HỎI ĐA THỨC \(f\left(x\right)+h\left(x\right)-g\left(x\right)\)=?
\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)
\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)
\(-\left(2x^4-x^3+x^2+2x+1\right)\)
\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)
\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)
\(=2x^4+4x^3-2x\)
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
CHO HAI ĐA THỨC: f(x) =\(x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(g\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
tính:\(f\left(x\right)+g\left(x\right);f\left(x\right)-g\left(x\right)\)
b, tính đa thức sau:
\(A=X^2+x^4+x^6+x^8+.....+x^{100};x=-1\)
MÌNH ĐANG BÍ LẮM CÁC BẠN GIÚP MÌNH NHA
Cho đa thức: \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
1. Thu gọn, rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến \(x\)
2. Xác định, bậc của đa thức, hệ số tự do, hệ số cao nhất
3. Tính \(f\left(-1\right),f\left(0\right),f\left(1\right),f\left(-a\right)\)
1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)
Sắp xếp theo lũy thừa giảm dần của biến x:
\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)
2. Bậc của đa thức: 4
Hệ số tự do: 1
Hệ số cao nhất: 7
3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)
\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)
\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)
\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)
\(\)
Cho đa thức \(f\left(x\right)\) = \(2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
a, Thu gọn đa thức \(f\left(x\right)\)
b, Tính \(f\left(-1\right)\)
*c, C/tỏ đa thức \(f\left(x\right)\) không có nghiệm
Cho đa thức \(f\left(x\right)\) = \(2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
a, Thu gọn đa thức \(f\left(x\right)\)
b, Tính \(f\left(-1\right)\)
*c, C/tỏ đa thức \(f\left(x\right)\) không có nghiệm
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)
\(f\left(x\right)=2x^6+3x^4+x^2+1\)
b) \(2.1+3.1+1+1=7\)
c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)
=> f(x) >=1 => dpcm
Mọi người giúp mình nha????
Bài 1:thu gọn đa thức
a,\(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
b,\(-54y^2\cdot bx\) với b là hằng số
c,\(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
Bài 2:cho 2 đa thức:
\(f\left(x\right)=x^5-3x^2+7x^4-9x^3-\frac{1}{4}\)
\(g\left(x\right)=5x^4-x^5+x^2+3x^2-\frac{1}{4}\)
a,Hãy thu gọn và sắp xếp hai đa thức trên
b,Tính \(f\left(x\right)+g\left(x\right)\) và \(f\left(x\right)-g\left(x\right)\)
Bài 3:Cho \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
a,Thu gọn f(x)
b,Tính f(1) và f(-1)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
Bài 1:
a) \(-\frac{1}{3}xy\cdot\left(3x^2yz^2\right)\)
\(=\left(-\frac{1}{3}\cdot3\right)\left(xx^2\right)\left(yy\right)z\)
\(=-x^3y^2z\)
b) \(-54y^2\cdot bx\)
\(=\left(-54b\right)xy^2\)
c) \(-2x^2y\cdot\left(\frac{1}{2}\right)^2\cdot x\cdot\left(y^2x\right)^3\)
\(=-2x^2y\cdot\frac{1}{4}\cdot x\cdot y^5x^3\)
\(=\left(-2\cdot\frac{1}{4}\right)\left(x^2xx^3\right)\left(yy^5\right)\)
\(=-\frac{1}{2}x^6y^6\)
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Cho hai đa thức \(f\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(g\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
Tính \(f\left(x\right)+g\left(x\right)\)và \(f\left(x\right)-g\left(x\right)\)
1. a) Cho đa thức \(h\left(x\right)=1+x+x^2+...+n^x.\) (n thuộc N*). Tính h(0), h(1), h(-1)
b) Cho đa thức \(p\left(x\right)=1-x+x^2-x^3+...+\left(-1\right)^nx^n.\) (n thuộc N*). Tính p(0), p(-1)
2. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
1. a)
\(h\left(0\right)=1+0+0+....+0=1\)
\(h\left(1\right)=1+\left(1+1+....+1\right)\)
( x thừa số 1)
\(=x+1\)
Với x là số chẵn
\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)
Với x là số lẻ
\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0
b) Tương tự