Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
x^n-1(x+y)-y(x^n-1+y^n-1) (Mình cách xa từng cái một cho bạn nhìn rõ nha)
=x^n-1+1 + xy^n-1 - xy^n-1 - y^n-1+1
=x^n-1+1 - y^n-1+1
=x^n - y^n
(Cái dòng thứ hai dưới cái đề bài í là nhân hai số có cùng cơ số bạn nhớ chứ)
\(=x^{2^{n-1}}+x^{n-1}y-yx^{n-1}+y^{2^{n-1}}\)
\(=x^{2^{n-1}}+y^{2^{n-1}}\)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)
Rút gọn biểu thức:
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)=x^n+y.x^{n-1}-y.x^{n-1}-y^n=x^n-y^n\)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^{n-1}x+x^{n-1}y-yx^{n-1}-y^{n-1}y\)
\(=x^n-y^n\)
Rút gọn biểu thức :
a) \(x\left(x-y\right)+y\left(x-y\right)\)
b) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
Bài giải:
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
a)x(x-y)+y(x-y)
=x.x+x.(-y)+y.x+y.(-y)
=x2-xy+xy-y2
=x2-y2
rút gọn biểu thức
a)\(x\left(x-y\right)+y\left(x-y\right)\)
b)\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
a) \(x\left(x-y\right)+y\left(x-y\right)\)
\(=x^2-xy+xy-y^2\)
\(=x^2-y^2\)
b) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}y-x^{n-1}y-y^n\)
\(=x^n-y^n\)
rút gọn biểu thức \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)
Rút gọn biểu thức sau
\(D=n^2\left(n+4\right)\left(n-4\right)+\left(1-n^2\right)\left(n^2+1\right)\)
\(E=\left(\frac{1}{2}x^m-y^n\right)×\left(y^n+\frac{1}{2}x^m\right)\)
Giúp mình với !!!
rút gọn biểu thức sau
a)\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
b)6x\(^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)
\(=x^n-y^n\)
a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)
\(=x^n-y^n\)
b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)
\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)
\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)
Đề có sai ko vậy bạn ???
Rút gọn bthức: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
1) Tìm số tự nhiên n để đơn thức A chia hết cho đơn thức B
\(A=\)\(4x^{n+1}y^2;B=3x^3y^{n-1}\)
2) Rút gọn biểu thức
\(\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3\left(x+y\right)^2\right]:\left(x+y\right)\)