C = 1 + 3 + 3^2 + ........ + 3^11 . CMR C :
a, chia hết cho 13
b, chia hết cho 40
Cho C 1 3 3 2 3 3 ... 3 11. Chứng minh rằng a, C chia hết cho 13b, C chia hết cho 40
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12
Cho C= 1+3+32+...+311. CMR:
a) C chia hết cho 40
b) C chia hết cho 13
Cho C= 1+3+32+...+311
a) \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3\right)\)
\(=40+3^4.40+3^8.40\)
\(=40.\left(1+3^4+3^8\right)\) chia hết cho 40.
b) \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^9.13\)
\(=13.\left(1+3^3+3^6+3^9\right)\)chia hết cho 13
=> điều phải chứng minh
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh hộ mình trước 6h nhé cố gắng giúp mình nhé ( gấp lắm đấy)
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Cho C=1+3+3^2+...+3^11
CMR: 1)C chia hết cho 13
2)C chia hết cho 40
C=1+3+3^2+...+3^11
C=(1+3+3^2)+...+(3^9+3^10+3^11)
C=13+13.3^3+...+13.3^9
C=13(1+3^3+3^6+3^9) chia hết 13
C=1+3+3^2+...+3^11
C=(1+3+3^2+3^3)+...+(3^8+3^9+3^10+3^11)
C=40+40.3^4+40.3^8
=40(1+3^4+3^8) chia hết 40
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
cho C =1+3+3^2+......+3^11.Cmr C chia hết cho 13; 40
cho C=1+32+33+.....+311 CMR
a)C chia hết cho 13 b)C chia hết cho 40
Bạn tham khảo 2 link này:
b) https://olm.vn/hoi-dap/detail/104629170538.html
a)https://olm.vn/hoi-dap/detail/8732513603.htm
C=như trên
đến đoạn này mình thấy đề bạn thiếu hay sao ý . đnág nhẽ là C=1+3+3^2+3^3 +..+3^1 ko nên làm theo cái mình sửa nhá
=> 3C=\(3+3^2+3^3+3^4+...+3^{12}\)
=>3C-C=\(\left(3+3^2+3^3+3^4+...+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)\)
=>2C=\(3^{12}-1=531440⋮40\)
=> 2C chia hết cho 40
=> C cũng chia hết cho 40
a) Ta có:
\(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^9.13\)
\(=13\left(1+3^3+...+3^9\right)⋮13\)
\(\Leftrightarrow C⋮13\left(đpcm\right)\)
b) Ta có:
\(C=1+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4.40+...+3^8.40\)
\(=40\left(1+3^4+...+3^8\right)⋮40\)
\(\Leftrightarrow C⋮40\left(đpcm\right)\)
cho C=1+3+32+33+.....+311
CMR ( chứng minh rằng ) :
a) C chia hết cho 13
b) C chia hết cho 40
ai nhanh mk tk
\(C=1+3+3^2+.....+3^{11}.\)
\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=13+3^3.13+....+3^9.13\)
\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)
Vì \(13⋮13\)
Do đó : \(C⋮13\)
\(C=1+3+3^2+.....+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=40+40.3^4+3^8.40\)
\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)
Vì \(40⋮40\)
Do đó \(C⋮40\)(đpcm)
a,C1+3+32)+.....+39,(1+3+32)
C=13+.....+39.13
C=13(1+.....+39) chia hết cho 13
Vậy C chia hết cho 13
b,C=(1+3+32+33)+.....+38(1+3+32+33)
C=40+.....+38+40
C=40(1+.....+38.40
C=40(1+.....+38 chia hết cho 40
Vậy C chia hết cho 40
a) C=(1+3+32)+(33+34+35)+(36+37+38)+(39+310+311)
C=1(1+3+32)+33(1+3+32)+...+39(1+3+32)
C=13(1+33+...+39) chia hết cho 13
b)C=(1+3+32+33)+(34+35+36+37)+(38+39+310+311)
C=1(1+3+32+33)+34(1+3+32+33)+38(1+3+32+33)
C=40(1+34+38) chia hết cho 40