Tính nhanh:
A=\(\frac{1991\cdot1993-1}{1990+1991\cdot1992}\)
Tính nhanh:
a) ( 1989 . 1990 + 3978) : ( 1992 . 1991 - 3984 )
Tính nhanh:
a) ( 1989 . 1990 + 3978) : ( 1992 . 1991 - 3984 )
\(\left(1989.1990+3978\right):\left(1992.1991-3984\right)\)
\(=\left[1989.\left(1990+2\right)\right]:\left[1992\left(1991-2\right)\right]=\left(1989.1992\right):\left(1992.1989\right)=1\)
1989 . 1990 + 3978 1992 . 1991 − 3984 ⇒ 1989 . 1990 + 1989 . 2 1992 . 1991 − 1992 . 2 ⇒ 1989 . ( 1990 + 2 ) 1992 . ( 1991 + 2 ) ⇒ 1989 . 1992 1992 . 1989 ⇒ 1
dấu chấm là dấu nhân
Tính nhanh
\(\frac{1991\times1993-1}{1990+1991\times1992}\)
\(\frac{1991x1993-1}{1990+1991x1992}=\frac{1991x\left(1992+1\right)-1}{1990+1991x1992}=\frac{1991x1992+1991-1}{1990+1991x1992}=\frac{1991x1992+1990}{1990+1991x1992}=1\)
\(\frac{1991.1993-1}{1990+1991.1992}=1\)
k nha
tính nhanh : 1991 nhân 1993 -1 phần 1990+ 1991 nhân 1992
1991*1993-1/1990+1991*1992
=1991*(1992+1)-1/1990+1991*1992
=1991*1992+1991*1-1/1990+1991*1992
=1990/1990
=1
1991*(1993-1)-1/1990+1991*1992
= 1991*1992-1/1990+1991*1992
= 1990/1990
= 1
so sánh : \(\frac{10^{1990}+1}{10^{1991}+1}\) và \(\frac{10^{1991}+1}{10^{1992}+1}\)
Đặt \(A=\frac{10^{1990}+1}{10^{1991}+1}\)
\(\Rightarrow10A=\frac{10\cdot(10^{1990}+1)}{10^{1991}+1}\)
\(=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
Đặt \(B=\frac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow10B=\frac{10\cdot(10^{1991}+1)}{10^{1992}+1}=\frac{10^{1992}+10}{10^{1992}+1}=\frac{10^{1992}+1+9}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Tự so sánh được rồi -_-
SO SÁNH
\(A=\frac{^{10^{1990}}+1}{10^{1991}+1}vàB=\frac{10^{1991}+1}{10^{1992}+1}\)
Ta có:
\(A=\left(\frac{10^{1990}+1}{10^{1991}+1}\right).\frac{10}{10}=\frac{10^{1991}+10}{10^{1992}+10}\)
Mình làm bằng cách tính phần bù:
Ta có:
\(1-A=1-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}+10}{10^{1992}+10}-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}-10^{1991}}{10^{1992}+10}\)
\(1-B=1-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}+1}{10^{1992}+1}-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)
Vì \(\frac{10^{1992}-10^{1991}}{10^{1992}+10}\frac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow A>B\)
Vì\(\frac{10^{1991}+1}{10^{1992}+1}\)<1
Nên\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)
Ta có: \(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\frac{10^{1991}+10}{10^{1992}+10}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+1}\)
=>\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+1}\)
Vậy: B<A
So sanh: \(A=\frac{10^{1990}+1}{10^{1991}+1};B=\frac{10^{1991}+1}{10^{1992}+1}\)
\(A=\frac{10^{1990}+1}{10^{1991}+1}vàB=\frac{10^{1991}+1}{10^{1992}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}
\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+1+9}{10^{1991}+1}\Rightarrow10A=1+\frac{9}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+1+9}{10^{1992}+1}\Rightarrow10B=1+\frac{9}{10^{1992}+1}\)
=> 10A > 10B
=> A>B
so sánh:
\(A=\frac{10^{1990}+1}{10^{1991}+1}\)và\(B=\frac{10^{1991}+1}{10^{1992}+1}\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)
=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)
=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)
=> B < A
Bài này mình biết làm nè , nhưng ... dài dòng lắm
So sánh
\(A=\frac{10^{1990}+1}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\)
Ta có :
A = \(\frac{10^{1990}+1}{10^{1991}+1}\)
10A = \(\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+10}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+1+9}{10^{1991}+1}\)
10A = \(1+\frac{9}{10^{1991}+1}\left(1\right)\)
Ta lại có :
B = \(\frac{10^{1991}+1}{10^{1992}+1}\)
10B = \(\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+10}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+1+9}{10^{1992}+1}\)
10B = \(1+\frac{9}{10^{1992}+1}\left(2\right)\)
Từ \(\left(1\right)va\left(2\right)\)
Ta có :\(1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\)10A > 10B
\(\Rightarrow\)A > B
10A=10^1991+10/10^1991+1 ;10B=10^1992+10/10^1992+1
10A=1+(10^1991+10-10^1991-1/10^1991+1) ;10B=1+(10^1992+10-10^1992-1/10^1992+1)
10A=1+(9/10^1991+1) ; 10B=1+(9/10^1992+1)
Có: 9/10^1991+1 > 9/10^1992+1
=>10A>10B
=>A>B