Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2020 lúc 20:13

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)

\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Vì \(x+y\ne0\) nên x-2y=0

hay x=2y

Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được: 

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

Vậy: \(A=\dfrac{1}{3}\)

Ngô Hoài Thanh
Xem chi tiết
Nguyễn Hữu Huy
Xem chi tiết
nnh
5 tháng 1 2018 lúc 20:04

chs bb ak

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Darlingg🥝
2 tháng 8 2019 lúc 8:28

Đặc P ta có

P= x2 - 2y2 =xy

<=> x2 - y2 - y2 -xy =0

=> (x-1) (x+y) -y (x+y) -1

=> (x+y_(x-2y)=0

Vậy 

x+y #0

=> x- 2y =0

=>x=2y

=>P=2y -y trên 2y + y =y trên 3y =1/3

Trương Lan Anh
Xem chi tiết
ST
13 tháng 7 2018 lúc 8:29

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

huy chiến
7 tháng 12 2018 lúc 12:33

x2  - 2y2 = xy <=> x2 - xy - 2y2 = 0 <=> x2 + xy - 2xy - 2y2 = 0 <=> x (  x + y ) - 2y 

( x + y ) = 0 <=> ( x - 2y ) ( x + y ) = 0

mà x + y \(\ne\) 0 => x - 2y = 0 => x = 2y

=> A = \(\frac{2y-y}{2y+y}\) = \(\frac{y}{3y}\) = \(\frac{1}{3}\)

Mèo con dễ thương
Xem chi tiết
Nguyễn Trần Như  Hằng
Xem chi tiết
Võ Đông Anh Tuấn
16 tháng 8 2016 lúc 9:34

Ta có :\(x^2-2y^2=xy\)

\(x^2-xy-2y^2=0\)

\(x^2+2xy+y^2-3xy-3y^2=0\)

\(\left(x+y\right)^2-3y\times\left(x+y\right)=0\)

\(\left(x+y\right)\left(x+y-3y\right)=0\)

\(\Rightarrow\begin{cases}x-2y=0\\x+y=0\end{cases}\)

Vậy \(\frac{x+y}{x-y}=\frac{0}{x-y}=0\)

Thương Thương
Xem chi tiết
Như Trần
31 tháng 8 2018 lúc 16:08

undefined

Ngô Hoài Thanh
Xem chi tiết
Min
2 tháng 1 2016 lúc 17:12

\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)

\(\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(\Rightarrow x-y=y\)

\(x=2y\)

Thay \(x=2y\)

\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

Nguyễn Quốc Cường
2 tháng 1 2016 lúc 17:00

3 đó các bạn

 

Trần Thu Phương
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2018 lúc 16:46

Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)

Trần Thùy Dương
18 tháng 7 2018 lúc 17:00

Vì \(x^2-2y^2=xy\) 

\(\Leftrightarrow x^2-xy-y^2=0\)

\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Theo đề bài thì có : 

\(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Leftrightarrow x=2y\)

Từ đó ta lại có :

\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy .......

Vũ Văn Huy
18 tháng 7 2018 lúc 16:52

ta có 

          x2-2y2=xy

<=>  x2 -xy -2y2 =0

<=> (x-2y)(x+y)=0

=>\(\orbr{\begin{cases}x=2y\\x+y=0\left(loại\right)\end{cases}}\)

nếu x=2y thì P=1/3