So sánh: a-1/a và b+1/b(a,b€z,a,b>0)
1.Cho a, b \(\in\)z b >0. So sánh a/b và a+1/b+1
2. Cho a, b \(\in\)z b>0. So sánh a/b và a+2005/b+2005
Giúp mình nha mình đang cần gấp
1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)
a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)
a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)
+ Với a/b < 1 <=> a/b < a+1/b+1
+ Với a/b = 1 <=> a/b = a+1/b+1
+ Với a/b > 1 <=> a/b > a+1/b+1
2) lm tương tự bài 1
1) Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
a - 1/a so sánh với b +1/ b ( a,b thuộc z và a,b > 0 )
c - 1/c so sánh với d + 1/d ( c , d thuộc z và c, d < 0 )
Cho a,b,n thuộc Z; b,n>0.
a) Chứng minh: \(\dfrac{a}{b}>1\Leftrightarrow a>b\) và \(\dfrac{a}{b}< 1\Leftrightarrow a< b\)
b) So sánh 2 số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
c) So sánh \(\dfrac{a}{b}\) và \(\dfrac{a+n}{a+n}\)
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Cho a, b € Z và b>0
So sánh: a/b và a+1/b+1
Xét hiệu:
\(H=\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)-b\left(a+1\right)}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}.\)
Vì b>0 => b+1>0. Do đó:
Nếu a>b thì H>0 hay: \(\frac{a}{b}>\frac{a+1}{b+1}\)Nếu a<b thì H<0 hay: \(\frac{a}{b}< \frac{a+1}{b+1}\)Nếu a=b thì H=0 hay: \(\frac{a}{b}=\frac{a+1}{b+1}\)Cho a , b thuộc Z và b>0 . So sánh a/b và a+1/b+1
a) cho a/b < 1 ( a,b thuộc N b khác 0)
CM a/b < a+n/b+n (n thuộc Z)
Vận dụng so sánh:
A= 15^18+1/15^17+1 và B= 15^17+1/15^18+1
b) cho a/b > 1 ( a,b thuộc N b khác 0)
CM a/b >a+n/b+n (n thuộc Z)
Vận dụng so sánh:
C= 100^90+1/100^89+1 và D= 100^89+1/100^88+1
Cho các số hữu tỉ: x=a/b; y=c/d;z=m/n(b,d,n>0). Biết ad - bc=1 và cn-dm=1
- So sánh các số x;y;z
-So sánh y với t, biết t= a+m/b+n(b+n khác 0)
a, ta có:x-y=a/b - c/d
=> x - y = ad-bc/ bd=1/bd mà b,d,n>0=>bd>0=> 1/bd>0
=>x >y(1)
ta lại có y-z =cn-dm/dn=1/dn
mà b,d,n=> dn>0=> 1/dn >0
=>y>z(2)
từ (1) ,(2) =>x>y>z
còn ý b các bạn tự suy nghĩ nhé
chúc các bạn học giỏi
ai trả lời zùm mình hết mình k cho 9 điểm
cho các số hữu tỉ x=a/b, y=c/d, z=m/n
biết ad-bc=1, cn-dm=1 và b,d.n>0
a) Hãy so sánh các số x, y, z
b) So sánh y với t biết t= a+m/b+n
Vì b,d,n > 0 nên Ta có:
ad - bc = 1 \(\Rightarrow\) ad > bc \(\Rightarrow\) \(\frac{a}{b}>\frac{c}{d}\) (1)
cn - dm = 1 \(\Rightarrow\) cn > dm \(\Rightarrow\) \(\frac{c}{d}>\frac{m}{n}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}>\frac{c}{d}>\frac{m}{n}\).
Vậy x > y > z
1) So sánh số hữu tỉ a/b (a,b thuộc Z, b khác 0) vs số 0 khi a,b cùng dấu và khi a,b khác dấu.
2) Giả sử x=a/m, y=b/m (a,b,m thuộc Z, m>0) và x>y.Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y. ( sử dụng tính chất: nếu a,b,m thuộc Z và a<b thì a+m<b+m)
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y