Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thanh Quỳnh
Xem chi tiết
HND_Boy Vip Excaliber
2 tháng 1 2017 lúc 20:52

Vì p là số nguyên tố lớn hơn 3 => p không chia hết cho 3

=> p +1 chia het cho 3 (1)

Vì p là số nguyên tố lớn hơn 3 => p là số lẻ

=> p + 1 là số chẵn => p + 1 chia hết cho 2 (2)

Tu (1) va (2) => p + 1 chia het cho (3 x 2) 

                        Hay P + 1 chia hết cho 6

k mik nha,đây là cách làm đúng nhất

Lã Nguyễn Gia Hy
2 tháng 1 2017 lúc 20:56

p là số nguyên tố lớn hơn 3 => p là số lẻ => p+1 chia hết cho 2 (1).

p là số nguyên tố lớn hơn 3 => p không chia hết cho 3. Mà p+2 cũng là số nguyên tố => p+2 không chia hết cho 3.

Mà trong 3 số tự nhiên liên tiếp p, p+1, p+2 phải có 1 số chia hết cho 3 => p+1 chia hết cho 3 (2)

Từ (1) và (2) => p+1 chia hết cho 6 (do ƯCLN(2,3)=1). 

Đỗ Hữu Phước
2 tháng 1 2017 lúc 21:07

p là số nguyên tố lớn hơn 3 nên p lẻ , do đó p+1chia hết cho 2                        (1)

p là số nguyên lớn hơn 3 nên có dạng 3k + 1 hoặc 3k+ 2 (k thuộc N)

Dạng  p = 3k + 1 không xảy ra .Dạng p =3k + 2 cho ta p + 1 chia hết cho 3             (2)

từ (1) và (2) suy ra  p + 1 chia hết cho 6

tk nha bạn

Nguyễn Trà My
Xem chi tiết
Nobita Kun
21 tháng 2 2016 lúc 17:05

Bổ sung cho Nguyễn Hung Phat:

Vì p là số nguyên tố lớn hơn 3

=> p là số lẻ

=> p + 1 là số chẵn

=> p + 1 chia hết cho 2

Kết hợp với p + 1 chia hết cho 3 của Nguyễn Hung Phat ta mới suy ra p + 1 chia hết cho 1

Vậy....

Nguyễn Hưng Phát
21 tháng 2 2016 lúc 17:00

Số nguyên tố lớn hơn 3 có dạng là:3k+1 hoặc 3k+2(k\(\in\)N*)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3(k+1) chia hết cho 3(trái với giả thiết)

Nếu p=3k+2 thì p+1=3k+2+1=3k+3 chưa chắc chia hết cho 6 mà chỉ chia hết cho 3

=>bạn xem lại đề

Phan Thảo Linh Chi
Xem chi tiết
trinh cong minh
Xem chi tiết
Lê Xuân Gia Hiển
Xem chi tiết
Ice
1 tháng 12 2016 lúc 21:21

Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1  hay 3k + 2 ( k \(\in\)N )

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố

Vì 3( k + 1 ) chia hết cho 3 nên dạng  p = 3k + 1 không thể có

Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )

=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3

Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ

=> p + 1 là 1 số chẵn 

=> p + 1 chia hết cho 2

Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1 

=> p + 1 chia hết cho 6

Xem chi tiết
vo phi hung
23 tháng 12 2018 lúc 13:53

số 5 

1 ) 5 > 3 

2 ) 5 + 2 = 7 ( 7 là số nguyên tố ) 

3 ) 5 + 1 = 6 ( điều phải chứng minh ) 

Nguyễn Hữu Triết
23 tháng 12 2018 lúc 13:53

Các số nguyên tố  p lớn hơn 3 : 5,7,11,13,.....

Ta có : p+2 cũng là số nguyên tố thì chỉ có p=5 thì p+2=7 mới là số nguyên tốt

Ta có p = 5 suy ra p+1=6 chia hết cho 6 (đccm)

Lam sao de k dung

Trần Công Vinh
Xem chi tiết
Từ Thuận Thiên
4 tháng 10 lúc 20:12

Vì p ko phải 3 và 2 nên p ko chia hết cho 3 và 2

=>p có 2 dạng là: 6k+1 và 6k+5

TH1: p=6k+5

Khi đó: p+4=6k+9, rõ ràng chia hết cho 3 vì 9 và 6 đều chia hết cho 3.

TH2: P=6k+1

khi đó: p+4=6k+5, như đã nói ở trên thì p có dạng này hoàn toàn hợp lý.

=>p=6k+1

Khi đó: p+5=6k+6=6.(k+1) chia hết cho 6 (ĐPCM)


đỗ minh quân
4 tháng 10 lúc 20:16

a có cách này hay lắm . lên chat gpt là xong

p là số nguyên tố lớn hơn 3 nên p là số lẻ và p không chia hết cho 3

Vì p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3 là hợp số

=>Loại

=>p=3k+1

p lẻ

=>3k+1 lẻ

=>3k chẵn

=>k chẵn

=>k=2x

p+5=3k+1+5

=3k+6

\(=3\cdot2x+6=6x+6=6\left(x+1\right)\) ⋮6

Pé Jin
Xem chi tiết
The Boy Sốc Nhiệt
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
2 tháng 10 2015 lúc 20:31

p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p=3k+1;3k+2

xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3

=>p+2 là hợp số(Vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3;2)=1=>p+1 chia hết cho 6

=>đpcm

Trịnh Tiến Đức
2 tháng 10 2015 lúc 20:31

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

Phạm Hân Hân
30 tháng 10 2016 lúc 18:29

Mik đồng ý với bạn Trịnh Tiến Đức. Vua ngăn gọn lại dễ hiểu