Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Hồng Phúc
Xem chi tiết
Thanh Tùng DZ
29 tháng 5 2017 lúc 18:56

a) \(5\frac{8}{17}:x+\frac{-1}{17}:x+3\frac{1}{17}:17\frac{1}{3}=\frac{4}{17}\)

\(\frac{93}{17}:x+\frac{-1}{17}:x+\frac{52}{17}:\frac{52}{3}=\frac{4}{17}\)

\(\left(\frac{93}{17}+\frac{-1}{17}\right):x+\frac{52}{17}.\frac{3}{52}=\frac{4}{17}\)

\(\frac{92}{17}:x+\frac{3}{17}=\frac{4}{17}\)

\(\frac{92}{17}:x=\frac{4}{17}-\frac{3}{17}\)

\(\frac{92}{17}:x=\frac{1}{17}\)

\(x=\frac{92}{17}:\frac{1}{17}\)

\(x=92\)

b) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{4}\right)+\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{1}{3}.\left(\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{6}{19}:\frac{1}{3}\)

\(1-\frac{1}{x+3}=\frac{18}{19}\)

\(\frac{1}{x+3}=1-\frac{18}{19}\)

\(\frac{1}{x+3}=\frac{1}{19}\)

\(\Rightarrow x+3=19\)

\(\Rightarrow x=19-3\)

\(\Rightarrow x=16\)

bach nhac lam
Xem chi tiết
Akai Haruma
5 tháng 1 2020 lúc 1:14

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
tthnew
5 tháng 1 2020 lúc 14:10

Bài 2/Áp dụng BĐT Bunyakovski:

\(\left(x^2+y^2+z^2\right)\left(1^2+3^2+5^2\right)\ge\left(x+3y+5z\right)^2\)

\(\Rightarrow P\ge\frac{\left(x+3y+5z\right)^2}{35}\) (*)

Ta có: \(x+3y+5z=x.1+\frac{y}{3}.9+\frac{z}{5}.25\)

\(=\frac{16z}{5}+8\left(\frac{y}{3}+\frac{z}{5}\right)+1\left(\frac{z}{5}+\frac{y}{3}+x\right)\)

\(\ge16+8.2+1.3=35\). Thay vào (*) là xong.

Đẳng thức xảy ra khi x = 1; y =3; z = 5

Khách vãng lai đã xóa
bach nhac lam
23 tháng 12 2019 lúc 10:44
Khách vãng lai đã xóa
Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2021 lúc 17:33

\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)

\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)

\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)

\(=0\)

Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết
Dong tran le
19 tháng 2 2018 lúc 6:48

tim max duoc thoi nhe ban

Nguyễn Đức Trường
Xem chi tiết
Lê Hoàng Đạt
Xem chi tiết
Kuro Kazuya
22 tháng 2 2017 lúc 13:36

\(VT=a+b+c=\alpha.\frac{a}{\alpha}+\beta.\frac{b}{\beta}+\gamma.\frac{c}{\gamma}\)

Áp dụng phương pháp nhóm ABEL

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\alpha}+\frac{b}{\beta}\ge2\sqrt{\frac{ab}{\alpha\beta}}\left(1\right)\\\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\left(3\right)\end{matrix}\right.\)

Ta có \(ab\ge\alpha\beta\Rightarrow\frac{ab}{\alpha\beta}\ge1\) \(\Rightarrow2\sqrt{\frac{ab}{\alpha\beta}}\ge2\left(2\right)\)

Ta có \(abc\ge\alpha\beta\gamma\Rightarrow\frac{abc}{\alpha\beta\gamma}\ge1\Rightarrow3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\ge3\left(4\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}\ge2\)

\(\Rightarrow\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)\ge2\left(\beta-\gamma\right)\) ( 5 )

Từ ( 3 ) và ( 4 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\)

\(\Rightarrow\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge3\gamma\) ( 6 )

Theo đề bài ta có \(a\ge\alpha\Rightarrow\frac{a}{\alpha}\ge1\)\(\Rightarrow\left(\alpha-\beta\right)\frac{a}{\alpha}\ge\alpha-\beta\) ( 7 )

Từ ( 5 ) , ( 6 ) , ( 7 ) cộng theo từng vế

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge2\left(\beta-\gamma\right)+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge2\beta-2\gamma+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge\alpha+\beta+\gamma\)

\(\Leftrightarrow a+b+c\ge\alpha+\beta+\gamma\) ( đpcm )

Trung Nguyen
Xem chi tiết
Lê Song Phương
Xem chi tiết