E=\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Bài 1: Rút gọn
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)
Rút gọn
\(A=\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
\(B=\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(C=\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(A=\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
\(=\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{3}-1+\sqrt{3}+1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\sqrt{3}}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\sqrt{3}}{3-1}\)
\(=\frac{2\sqrt{3}}{2}\)
\(=\sqrt{3}\)
\(B=\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)}+\frac{\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\frac{5+2\sqrt{5}+1+5-2\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=\frac{12}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=\frac{12}{5-1}\)
\(=\frac{12}{4}\)
\(=3\)
Rút gọn A = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
Rút gọn biểu thức: \(P=\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}+\frac{\left(\sqrt{5}-1\right).\sqrt[3]{2+\sqrt{5}}}{\sqrt{28}-10\sqrt{3}+\sqrt{3}}\)
Giúp mk nha!
Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !
p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.
Rút gọn :
E=\(\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)
E=\(\frac{\left(\sqrt{5}\right)^3+\left(\sqrt{3}\right)^3}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}+3\right)}{\sqrt{5}+\sqrt{3}}\)=8-\(\sqrt{15}\)
\(\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}=8-\sqrt{15}\)nha hoshi nguyen ^_^
rút gọn
\(E=\frac{\sqrt{8}+3}{\sqrt{17-3\sqrt{32}}}+\frac{3+2\sqrt{5}}{\sqrt{29-12\sqrt{5}}}-\frac{1}{\sqrt{12+2\sqrt{35}}}\)
Rút gọn:
\(A=\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
bạn quy đồng nha,,nhóm cái căn3 + căn 5 thành 1 nhóm,,,rồi quy đồng \(\sqrt{2}-\left(\sqrt{3}+\sqrt{5}\right)\)
\(\frac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\frac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)Rút gọn
=\(\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
=\(\frac{5-\sqrt{15}-2\sqrt{15}+6-10-2\sqrt{15}-\sqrt{15}-3}{5-3}\)
\(=\frac{-2-6\sqrt{15}}{2}=\frac{-2\left(1+3\sqrt{15}\right)}{3}=-1-3\sqrt{15}\)
Rút gọn \(\frac{1}{\sqrt{\frac{3}{5}}+\sqrt{\frac{3}{7}}+1}+\frac{1}{\sqrt{\frac{5}{3}}+\sqrt{\frac{5}{7}}+1}+\frac{1}{\sqrt{\frac{7}{3}}+\sqrt{\frac{7}{5}}+1}\)
\(\frac{1}{\text{ }\sqrt{\frac{3}{5}}+\sqrt{\frac{3}{7}}+1}=\frac{1}{\frac{\sqrt{3.7}+\sqrt{3.5}+\sqrt{5.7}}{\sqrt{5.7}}}=\frac{\sqrt{35}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)
Tương tự :
\(\frac{1}{\sqrt{\frac{5}{3}}+\sqrt{\frac{5}{7}}+1}=\frac{\sqrt{21}}{\sqrt{35}+\sqrt{15}+\sqrt{21}}\)
\(\frac{1}{\sqrt{\frac{7}{3}}+\sqrt{\frac{7}{5}}+1}=\frac{\sqrt{15}}{\sqrt{21}+\sqrt{35}+\sqrt{15}}\)
Bây giờ chỉ việc cộng lại chung mẫu
Kq ; 1