2x = 3y = 4z - 2y
và x+y+z =45
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
tìm x;y;zbiet
2x=3y=4z và x+y+z=45
5x=2y=4z và x+y+z=60
Tìm x, y,z biết
2x=3y=4z-2y và x +y +z =45
2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
3y = 4z - 2y \(\Rightarrow\)5y = 4z \(\Rightarrow\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)
\(\Rightarrow x=18;y=12;z=15\)
2x = 3y = 4z - 2y
và x + y + z = 45
Super Xayda Vegito
Bấm vào đây :
Câu hỏi của Nguyễn Quang Linh - Toán lớp 7 - Học toán với OnlineMath
2x = 3y = 4z - 2y
\(\frac{2x}{6}=\frac{3y}{6}=\frac{4z-2y}{6}\)
\(\frac{x}{3}=\frac{y}{2}=\frac{4z-2y}{6}\)
Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{4z-2y}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=2k\\4z-2y=6k\end{cases}}\Rightarrow\hept{\begin{cases}x=3k\\y=2k\\z=\frac{5}{2}k\end{cases}}\)
Thay x,y,z vào đẳng thức : x + y + x = 45
=> 3k + 2k + \(\frac{5}{2}k\)= 45
=> \(\frac{15}{2}k=45\)
=> k = 6
=> \(\hept{\begin{cases}x=3k=3.6=18\\y=2k=2.6=12\\z=\frac{5}{2}k=\frac{5}{2}.6=15\end{cases}}\)
Tìm x; y; z biết:
1) 2x = 3y - 2x và x + y = 14
2) 5x = 4x + 2y và x + y = -56
3) 3x + 2y = 7y - 3x và x - y = 10
4) 6x - 2y = 3y - 4x và x + y = -99
5) 7x - 2y = 5x - 3y và 2x + 3y = 20
6) 4x - 3y = 7y - 6x và 2x + 3y = 55
7) 2x = 3y = 4z - 2y và x + y + z = 45
8) 5x = 2y = 4z + y và x + y + z = 66
9) 2x = 5y = 3z - 2x và x + y + z = 62
10) 3x = 4y = 2z - x và x + y + z = 60
11) 2x = 3y - 2x = 5z và x - y + z = 99
12) 3x = 2y - 3z = 4z và x + y - z = 46
13) 2x = 3y - 2x = 4z - 3x và x - y + z = 44
14) 5x - 2y = 4y = 3z - 4y và x + y - z = 70
15) 2x - 3z = 4y - 2z = 7z và x + y + z = -99
16) 2x = 3y - 2x = 5z - 3y và x + y + z = 53
17) 3x = 4y - 2x = 7z - 4y và x + y - 2z = 10
18) 3x = 2y - 4x = 5z - 4y và x - y + x = 36
19) 5x - 3y = 4y = 3z + 10x và x + y + z = 28
20) 4x - 3z = 6y - x = z và 2x + 3y + 4z = 19
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
giúp tôi với :
2x=3y=4z-2y và x+y+z=45
\(3y=4z-2y\Rightarrow4z=5y\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(2x=5y=4z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{5}+\frac{1}{4}}=\frac{45}{\frac{19}{20}}=\frac{900}{19}\)
\(2x=\frac{900}{19}\Rightarrow x=\frac{900}{19}:2=\frac{450}{19}\)
\(5y=\frac{900}{19}\Rightarrow y=\frac{900}{19}:5=\frac{180}{19}\)
\(4z=\frac{900}{19}\Rightarrow z=\frac{900}{19}:4=\frac{225}{19}\)
a, x-3 trên 7= y-5 trên 5= z-7 trên 3 và x+y+z= 45
b, 2x = 3y - 2x = 5z và x-y+z = 99
c,3x = 2y - 3z = 4z và x+y- z = 46
tìm x,y, z
a,1/2x =3/4z= 2/3y và x-y =15
b, x-1/2 =y-2/3=z-3/4 và 2x+3y -z= 50
c, 2x/3 =3y/4=4z/5 và x+y+z=49
MIK LM CÂU KHÓ NHẤT NHÁ!
c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)
Vậy...
a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)
=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)
=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\) và \(x-y=15.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)
Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)
Chúc bạn học tốt!
b, \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) = k ⇒ \(\left\{{}\begin{matrix}x=2k+1\\y=3k+2\\z=4k+3\end{matrix}\right.\)
Mà 2x + 3y - z = 50
⇒ 2(2k + 1) + 3(3k + 2) - (4k + 3) = 50
4k + 2 + 9k + 2 - 4k - 3 = 50
(4 + 9 - 4)k = 50 - 2 - 6 + 3
9k = 45
k = 5
+ x = 2.5 = 10
y = 3.5 = 15
z = 4.5 = 20
Vậy x = 10; y = 15; z = 20
3x=2y=z và x+y+z=99
2x=3y=-2z và 2x-3y+4z=48
x/0.5=y/0.3=z/0.2 và 2x+3y-4z=34
x-1/3=y-2/4=z-3/5 và x+y+z=30
x+1/3=y+2/-4=z-3/5 và 3x+2y+4z=47
x/4=y/4 và x^2y=100
giúp mình với
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)