cho x/z+t=y+z/t+x=z+t/x+y=t/x+y+z
Tính P= x+y/z+t + y+z/t+x + z+t/x+y + t+x/z+y
cho x/y+z+t=y/x+z+t=z/x+y+t=t/x+y+z
tính P=x+y/z+t+y+z/t+x+z+t/x+y=t+x/z+yb viết lại cái đề đi mik k hieuur
cho x/y+z+t = y/x+z+t = z/x+y+t = t/x+y+z .
Tính P=x+y/z+t + y+z/t+x + z+t/x+y + t+x/y+z
*)Nếu \(x=y=z=t\)
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+x+t}=\dfrac{t}{x+y+z}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+x+t}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)=> \(P=\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}=4\)
*)Nếu có ít nhất 2 số khác nhau , giả sử \(x\ne y\)
=> \(\dfrac{x}{y+z+t}=\dfrac{y}{x+z+t}=\dfrac{x-y}{y+z+t-x-z-t}=\dfrac{x-y}{y-x}=-1\)
=> \(x=-\left(y+z+t\right)\Rightarrow x+y+z+t=0\)
=> \(\left[{}\begin{matrix}x+y=-\left(z+t\right)\Rightarrow\dfrac{x+y}{z+t}=-1\\y+z=-\left(t+x\right)\Rightarrow\dfrac{y+z}{t+x}=-1\\z+t=-\left(x+y\right)\Rightarrow\dfrac{z+t}{x+y}=-1\\t+x=-\left(y+z\right)\Rightarrow\dfrac{t+x}{y+z}=-1\end{matrix}\right.\)
=> \(P=-1-1-1-1=-4\)
Vậy P=4
P = -4
x/y+z+t+2015 = y/x+z+t+2015 , y/x+z+t+2015 = z/x+y+t+2015 , z/x+y+t+2015 = t/x+y+z+2015 , t/x+y+z+2015 = 2015 /x+y+z+t*x+y/z+t+2015 + y+z/x+t+2015 + z+t/x+y+2015 + (t+2015) /x+y+z + 2015 +x /y+z+t
Cho x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z).CM: P=(x+y)/(z+t)+(y+z)/(t+x)+(z+t)/(x+y)+(t+x)/(y+z) có giá trị nguyên
Cho biết x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z
Tính C =( x+y/z+t ) + ( y+z/t+x) + (z+t/x+y) + (t+x/y+z)
Cho dãy tỉ số (2015*x+y+z+t)/x=(x+2015y+z+t)/y=(x+y+2015z+t)/z=(x+y+z+2015t)/t Tính A = (x+y)/(z+t)=(y+z)/(t+x)=(z+t)/(x+y)=(t+x)/(y+z)
Cho: x/(y+z+t) = y/(x+z+t) = z/(y+x+t) = t/(y+z+x)
Tính P = (x+y)/(z+t) + (y+z)/(t+x) + (z+t)/(x+y) + (t+x)/(z+y)
Giúp mình với
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{y+x+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3x+3y+3z+3t}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow3x=y+z+t\)
\(3y=x+z+t\)
\(3z=x+y+t\)
\(3t=x+y+z\)
\(\Rightarrow x=y=z=t\)
Ta có:
\(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
\(P=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}\)
\(P=1+1+1+1=4\)
cho x/y+z+t=y/z+t+x=z/t+x+y=t/x+y+z cmr bieu thuc sau co gia tri nguyen P=(x+y/z+t)+(y+z/t+x)+(z+t/x+y)=(t+x/y+z)
Cho x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z) cmr P=(x+y)/(z+t)+(y+z)/(t+x)+(z+t)/(x+y)+(t+x)/(y+z) là biểu thức có giá trị nguyên