Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh
Xem chi tiết
soái cưa Vương Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2018 lúc 14:19

b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố

n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3

Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.

Vậy với n = 0 thì 3n + 6 là số nguyên tố.

Hoàng Khánh Linh
Xem chi tiết
KCLH Kedokatoji
3 tháng 3 2020 lúc 11:29

\(3n+6⋮3\)

Số nguyên tố duy nhất chia hết cho 3 là 3

\(\Rightarrow3n+6=3\Leftrightarrow3n=-3\Leftrightarrow n=-1\)  . Vậy n=1

Khách vãng lai đã xóa
KCLH Kedokatoji
3 tháng 3 2020 lúc 11:31

Mình thiếu, -1 không là số tự nhiên nên không có số n nào thoả mãn đề bài

Khách vãng lai đã xóa
Nguyễn Cường Thịnh
3 tháng 3 2020 lúc 11:46

ko có n thỏa mãn đề bài mà bạn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 3 2019 lúc 5:02

a)

a b ¯ + b a ¯ = 10 a + b + 10 b + a = 11 a + 11 b = 11 ( a + b ) ⋮ 11

b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố

n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3

Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.

Vậy với n = 0 thì 3n + 6 là số nguyên tố.

Lee Junsu Oppa
Xem chi tiết
Hà Thị Nhung
Xem chi tiết
Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

Mai Ngô Quỳnh
Xem chi tiết
Ngô Chi Lan
15 tháng 6 2021 lúc 9:34

Ta có:\(P=n^3-n^2+7n+10\)

\(=n^3-2n^2+n^2-2n-5n+10\)

\(=n^2\left(n-2\right)+n\left(n-2\right)-5\left(n-2\right)\)

\(=\left(n-2\right)\left(n^2+n-5\right)\)

Vì P là số nguyên tố nên 

\(n-2=1\Rightarrow n=3\)(nhận)

\(n^2+n-5=1\)\(\Rightarrow n^2+n-6=0\Rightarrow\left(n+3\right)\left(n-2\right)=0\Rightarrow n=-3\left(l\right);n=2\left(n\right)\)

Ta có:\(\hept{\begin{cases}n=3\Rightarrow P=7\left(n\right)\\n=2\Rightarrow P=0\left(l\right)\end{cases}}\)

Vậy n=3

Khách vãng lai đã xóa
Đoàn Đức Hà
15 tháng 6 2021 lúc 9:53

\(P=n^3-n^2-7n+10=\left(n-2\right)\left(n^2+n-5\right)\)

- Với \(n-2< 0\Leftrightarrow n< 2\).

Bằng cách thử trực tiếp \(n=0,n=1\)thu được \(n=1\)thỏa mãn \(P=3\)là số nguyên tố. 

- Với \(n-2\ge0\)thì \(n-2\ge0,n^2+n-5>0\)khi đó \(P\)có hai ước tự nhiên là \(n-2,n^2+n-5\).

Để \(P\)là số nguyên tố thì: 

\(\orbr{\begin{cases}n-2=1\\n^2+n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\\n=2,n=-3\end{cases}}\)

Thử lại các giá trị trên thu được \(n=3\)thì \(P=7\)thỏa mãn. 

Vậy \(n=1\)hoặc \(n=3\)

Khách vãng lai đã xóa