1/3 + 1/6 + 1/10 + ...+ 1/x * ( x + 1) = 2011/2013
1/3+1/6+1/10+........+2/x(x+1)=2011/2013
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
=> \(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{2011}{2013}\)
=> \(1-\frac{2}{x+1}=\frac{2011}{2013}\)
=> \(\frac{2}{x+1}=1-\frac{2011}{2013}=\frac{2}{2013}\)
=> x + 1 = 2013
=> x = 2013 - 1 = 2012
1/3+1/6+1/10 +...+2/ x.(x+1)=2011/2013
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4016}\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\Rightarrow x+1=2013\Rightarrow x=2012\)
1/3+1/6+1/10+...+2/x(x+1)=2011/2013. Tìm x
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
=> x+1 = 2013 => x = 2012
1/3+1/6+1/10+...........+1/1300
Tìm x biết 1/3 + 1/6 + 1/10 +.........+2/x. (x+1) = 2011/2013
NHân tất cả với 1/2 sau đó đưa về dạng quen thuộc
1/3+1/6+1/10+......+2/Xx(X+1)=2011/2013
Tìm x
1/2x3/2+1/3x4/2+1/4x5/2+1/5x6/2+.......+2/Xx(X+1)=2011/2013
2/2x3+2/3x4+2/4x5+2/5x6+.....+2/Xx(X+1)=2011/2013
2x(1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(x+1)=2011/2013
1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(X+1)=2011/4026
1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.....+ 1/x-1/x+1=2011/4026
1/2-1/x+1=2011/4026
1/x+1=1/2-2011/4026
1/x+1=1/2013
Suy ra x=2012
\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{2}{x\left(x+1\right)}\)=\(\dfrac{2011}{2013}\)
Tìm số tự nhien x biết 1/3+1/6+1/10+...+2/x(x+1)=2011/2013
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2011}{2013}\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2011}{2013}\)
\(\Rightarrow2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2011}{2013}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2012\)
Chúc hok dốt!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2013-1\)
\(\Rightarrow x=2012\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\) (1/3=2/6;...)
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(1-\frac{2}{x+1}=\frac{2011}{2013}\)
\(\frac{2}{x+1}=\frac{2}{2013}\)
=> x + 1 = 2013
x = 2012