Tìm x,y,z biết
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
tìm x , y , z biết : \(\frac{x}{x+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{1}{2}\left(x+y+z\right)\)
Tìm x, y, z biết: \(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{1}{2}\left(x+y+z\right)\)
Tìm x,y,z biết:
\(\frac{x+y+3}{z}=\frac{y+z-5}{x}=\frac{x+z+2}{y}=2\left(x+y+z\right)\)
Tìm x,y,z biết \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x,y,z biết
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
ai mua , đổi acc bang bang thì nhắn tin vs tui
Tìm x;y;z biết
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
=>\(\frac{\left(x+y+z\right)2}{x+y+z}=\frac{1}{x+y+z}\)
=> x+y+z=1/2
=> y+z=2x-2
=> x+z=2y-3
=>x+y=2x+5
=> 1/2-x=2x-3
=> x=5/6
=>1/2-y=2y-3
=> y=7/6
=> z=1/2-(7/6+5/6)=-3/2
Tìm x,y,z thuộc Z biết:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=x+y+z=3\)
Tìm x;y; x biết:
x+y+z=\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)