Tim so tu nhien N biet
cau 1: (N+6) chia het cho n
cau 2:15 chia het cho (2n+1)
Tim n thuoc so tu nhien biet :
a)24 chia het cho (2n +1 )
b)(n +15) (n+6)
c)(5n +4) chia het cho 8
d) (3n +19) chia het cho n + 4
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Tim so tu nhien n biet:
6n+27 chia het cho 2n+3;
2n+5 chia het cho 3n+1
a) Ta thấy :
27 chia hết cho 3
6n = 3.2.n chia hết cho 2.n
Vậy n = 0; 1; 2; 3; 4; 5; 6; ... hay n = mọi số tự nhiên .
b) 2n + 5 chia hết cho 3n + 1
2n + 4 + 1 chia hết cho 2n + n + 1
Vì 2n + 1 chia hết cho 2n + 1 nên 4 chia hết cho n
Ư(4) = 1; 2; 4
Vậy n = 1; 2; 4
Cấm COPY
tim so tu nhien n biet 2n+7 chia het cho n+1
Để\(2n+7⋮n+1\Leftrightarrow\frac{2n+7}{n+1}\in\)\(Z\)
Mà:\(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2n+2}{n+1}+\frac{5}{n+1}=2+\frac{5}{n+1}\)
\(\Rightarrow\text{Đ}\text{ể}\frac{2n+7}{n+1}\in Z\rightarrow\frac{5}{n+1}\in Z\Rightarrow n+1\in U\left(5\right)\)
Ta có bảng sau:
n + 1 | 5 | -5 | 1 | -1 |
n | 4 | -6 | 0 | -2 |
Mà: n là số tự nhiên => n = {4 ; 0}
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
tim so tu nhien n biet (4n-5)chia het cho(2n-1)
Biet rang so tu nhien n chia het cho 2 va n2 - 2n chia het cho 5. tim chu so tan cung cua n
Vì n chia hết cho 2 => n(n-2) chia hết cho 2 mà chúng chia hết cho 5 => n(n-2) chia hết cho 10 => n(n-2) có tạn cùng = 0
=> n có tạn cùng là 0 hoặc 2.
Tim so tu nhien n sao cho:
a/ 5:n+1 b/ 15:n+1 c/ n+3 : n+1 d/ 4n+3:2n+1
Biet rang 7a+2b chia het cho 13 ( a,b thuoc N ). Chung to rang 10a+b cung chia het cho 13 ?
a) Ta có:
\(5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)
Vậy \(n\in\left\{0;4\right\}\)
b) Ta có:
\(15⋮n+1\)
\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)
Vậy \(n\in\left\{0;2;4;14\right\}\)
c) Ta có:
\(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{0;1\right\}\)
d) Ta có:
\(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)
\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Vậy \(n=0\)
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3