Tjm x, biết
\(\left(2:x-\frac{1}{3}\right).\left(x^2-25\right)=0\)
tjm x\(\in\)tap h0p s0 hưu tj:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
nhanh dj....cam 0n nha
toán lớp 7 thật ko vậy
nếu thật thì học kì mấy vậy bạn hiền
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(=>x\ge3\)
\(hay\) \(x\ge\frac{2}{3}\)
Vì nếu x = 2 hoặc bé hơn 2 thì 2 - 2 = 0 ( loại )
Và nếu x = 2/3 hoặc bé hơn 2/3 thì 2/3 - 2/3 0 ( loại )
Vậy \(x\ge3\) hoặc \(x\ge\frac{2}{3}\)
tìm x biết :
a) \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
b) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
c) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)
TH1: \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)
TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)
\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Rightarrow3x=\frac{1}{9}\)
\(\Rightarrow x=\frac{1}{27}\)
\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
Bổ sung câu a: \(\Rightarrow\) \(\left[\begin{array}{nghiempt}\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\\\left(x+\frac{1}{5}\right)^2=\left(-\frac{3}{5}\right)^2\end{array}\right.\)\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{2}{5}\\x=-\frac{4}{5}\end{array}\right.\)
Tìm x, y, z, biết :
a) \(\left|\frac{1}{2}+x\right|+\left|x+y+z\right|+\left|\frac{1}{3}+y\right|=0\)
b) \(\left|\frac{1}{12}-x\right|+\left|\frac{1}{25}-y\right|+\left|z-\frac{14}{3}\right|\le0\)
BT9: Tìm x biết
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\)
\(10,\left(x+3\right)^2-x^2=45\)
\(11,\left(5x-4\right)^2-49x^2=0\)
\(12,16\left(x-1\right)^2-25=0\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
tìm x biết:
a) \(\left|x+0,573\right|=2\)
b)\(\left|x+\frac{1}{3}\right|-4=\left(-1\right)\)
c)\(1,5.\left|3x-1\right|+4,659=9,103\)
d) \(\left[\frac{\left(x-4\frac{1}{2}\right):0,003}{\left(3\frac{1}{20}-2,65\right).4:\frac{1}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right):\frac{1}{8}}\right]:62\frac{1}{20}+17,81:0,0131-1301=0\)
a)|x+0,573|=2
=>x+0,573=2 hoặc -2
Xét x+0,573=2
=>x=1,427
Xét x+0,573=-2
=>x=-2,573
a) | x + 0,573 | = 2
\(\Rightarrow\)x + 0,573 = 2 hoặc x + 0,573 = -2
+) x + 0,573 = 2\(\Rightarrow\)x = 1,427
+) x + 0,573 = -2\(\Rightarrow\)x = -2,573
Vậy x = 1,427 hoặc -2,573
b) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=3\)
\(\Rightarrow x+\frac{1}{3}=3\) hoặc \(x+\frac{1}{3}=-3\)
+) \(x+\frac{1}{3}=3\Rightarrow x=\frac{8}{3}\)
+) \(x+\frac{1}{3}=-3\Rightarrow x=\frac{-10}{3}\)
Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{-10}{3}\)
Các phần khác làm tương tự nhé bạn
b)\(\left|x+\frac{1}{3}\right|-4=\left(-1\right)\)
\(\left|x+\frac{1}{3}\right|=3\)
\(\Rightarrow x+\frac{1}{3}=-3\)hoặc\(3\)
Xét \(x+\frac{1}{3}=-3\)
\(\Rightarrow x=-\frac{10}{3}\)
Xét \(x+\frac{1}{3}=3\)
\(\Rightarrow x=\frac{8}{3}\)
1 , Tìm x,y biết
|x-y|+\(\left|y+\frac{9}{25}\right|\) = 0
2, Tìm x biết
a, \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
1) Tìm x, y biết : \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có :
\(\left|x-y\right|\ge0\forall x;y\)
\(\left|y+\frac{9}{25}\right|\ge0\forall y\)
\(\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\Leftrightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\frac{9}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=-\frac{9}{25}\end{matrix}\right.\)
Vậy : \(x=y=-\frac{9}{25}\)
2) Tìm x biết :
a) \(\left|x+\frac{2}{11}\right|>\left|-5,5\right|\)
\(\Rightarrow\left|x+\frac{2}{11}\right|>5,5=\frac{11}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{2}{11}>\frac{11}{2}\\x+\frac{2}{11}>-\frac{11}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\frac{11}{2}-\frac{2}{11}=\frac{117}{22}\\x>-\frac{11}{2}-\frac{2}{11}=-\frac{125}{22}\end{matrix}\right.\Rightarrow x>-\frac{125}{22}\)
Vậy : \(x>-\frac{125}{22}\)
Đúng không ta ? Mình không chắc lắm ....
2.Tìm x biết :
a) \(\left|x+\frac{2}{11}\right|>\left|-5,5\right|\)
\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>0\\x< 11\end{matrix}\right.\)
Vậy : \(0< x< 11\)
P/s: Xin lỗi bạn , phần a) câu 2 này mình làm lại nhiều lần quá. Lần này chắc chắn đúng nha ...
tìm x biết
\(\frac{\left(24-x\right)^2+\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}{\left(24-x\right)^2-\left(24-x\right)\left(x-25\right)+\left(x-25\right)^2}=\frac{19}{49}\)
Đặt \(a=24-x,b=x-25\)
Khi đó pt ban đầu trở thành :
\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow30a^2+68ab+30b^2=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)
Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(x^2-3x=0\)
đâu phải toán lớp 1
bạn chọn nhầm à
Tìm x
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
giải nhanh hộ mình với, mai mình nộp rồi
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=0+\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{3^2}{5^2}\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow\hept{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=\frac{3}{5}-\frac{3}{5}\\2x=-\frac{3}{5}-\frac{3}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=0\\2x=\frac{-6}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0:2\\x=-\frac{6}{5}:2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
b) \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Rightarrow3\left(3x-\frac{1}{2}\right)^3=0-\frac{1}{9}\)
\(\Rightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}:3\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1^3}{3^3}\right)\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=-\frac{1}{3}\)
\(\Rightarrow3x=-\frac{1}{3}+\frac{1}{2}\)
\(\Rightarrow3x=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{6}:3\)
\(\Rightarrow x=\frac{1}{18}\)