Chứng tỏ rằng
A=(5+5 mũ 2+...+5 mũ 8):30
chứng tỏ rằng
A = 5 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 + ................ + 5 mũ 8 là bội của 30
B = 3 + 3 mũ 2 + 3 mũ 5 + 3 mũ 7 + ...........+ 3 mũ 29 là bội của 273
\(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+.............+3^{24}\left(3+2^3+3^5\right)\)
\(B=273+273\cdot3^6+.............+273\cdot3^{24}\)
\(B=273\left(1+3^6+.......+3^{24}\right)⋮273\)
\(A=\left(5+5^2\right)+\left(5+5^2\right)5^2+\left(5+5^2\right)5^4+\left(5+5^2\right)5^6+\left(5+5^2\right)5^8\)
\(A=30+30\cdot5^2+30\cdot5^4+30\cdot5^6+30\cdot5^8\)
\(A=30\left(1+5^2+5^4+5^6+5^8\right)⋮30\)
chứng tỏ rằng 5+5 mũ 2 +5 mũ 3 +5 mũ 4 +........5 mũ 29 +5 mũ 30
chia hết cho ...
cuối là chia hết cho 6
chứng tỏ rằng 5+5 mũ 2 +5 mũ 3 +5 mũ 4 +..........+ 5 mũ 29 + 5 mũ 30
thieu de hay sao y
cuối là chia hết cho 6
Đặt A=5+52+53+54+...+530
=(5+52)+(53+54)+...+(529+530)
=5.(1+5)+53(1+5)+...+529(1+5)
=5.6+53.6+...+529.6
Vì 6 chia hết cho 6 nên 5.6+53.6+...+529.6 chia hết cho 6
hay A chia hết cho 6
Vậy A chia hết cho 6
Cho A= 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 100
B= 5 + 5 mũ 2 + 5 mũ 3 +...... +5 mũ 96
C= 2 mũ 100 - 2 mũ 99 + 2 mũ 98 - 2 mũ 97 + ...+ 2 mũ 2 - 2
a) chứng tỏ rằng A chia hết cho 6 và 30
b) Chứng tỏ rằng B chia hết cho 6 và 31, 26, 126
c) Tinh giá trị của A,B,C
1)cho S=5 +5 mũ 2+5 mũ 3 +......+5 mũ 96
Chứng tỏ rằng S chia hết cho 126
Tìm cs tận cùng của S
2) Chứng tỏ rằng 16 mũ 2008-8 mũ 2000:10
3) Tìm x biết
a)1 mũ 3+2 mũ 3 +3 mũ 3+....+10 mũ 3 =(x+1 mũ 2)tất cả mũ 2
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
2) 162008 - 82000
= (...6) - (84)500
= (...6) - (...6)500
= (...6) - (...6)
= (...0) chia hết cho 10
3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2
=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2
=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2
=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2
=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2
=> 1100 + 800 + 1125 = (x + 1)2
=> 3025 = (x + 1)2, vô lí
1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)
S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)
S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)
S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) + ... + 593.(1 + 53)
S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126
S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126
+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2
=> S chia hết cho 10 => S có tận cùng là 0
Bài 4: Chứng tỏ rằng:
a, Giá trị của A= 5+ 5 mũ 2+ 5 mũ 3+....+5 mũ 8 là bội của 30
b,giá trị của B= 3+ 3 mũ 3+ 3 mũ 5+ 3 mũ 7+...3 mũ 29 là bội của 273
a) \(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)=30+5^2.30+...+5^6.30\)
\(=30\left(1+5^2+...+5^6\right)⋮30\Rightarrowđpcm\)
b) \(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)=273+3^6.273+...+3^{24}.273\)
\(=273.\left(1+3^6+...+3^{24}\right)⋮273\Rightarrowđpcm\)
a: \(B=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)\)
\(=156\cdot5\cdot\left(1+5^4\right)\)
\(=780\left(1+5^4\right)⋮30\)
b: \(B=\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^2+3^5\right)\)
\(=273\cdot\left(1+...+3^{24}\right)⋮273\)
Bài 1 : Chứng tỏ rằng :
a) 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 555
b) 81 mũ 7 - 27 mũ 9 - 9 mũ 19 chia hết cho 45
Bài 2 : Chứng tỏ rằng :
A = 5 + 5 mũ 5 + 5 mũ 3 + ... +5 mũ 99 + 5 mũ 100 chia hết cho 6
Mấy bạn giúp mk với gấp lắm !
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Bài 2:
A = 5 + 52 + 53 + ... + 599 + 5100 chứ em?
cho S= 5+5 mũ 2+ 5 mũ 3+......+5 mũ 2020+ 5 mũ 2021. Chứng tỏ rằng 4*S+5=5 mũ 2022
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022
1 . chứng minh rằng : 30 mũ 5 x 7 - 6 mũ 5 x 5 mũ 3 x 25 x 4 chia hết cho 3
2 . chứng minh đẳng thức : 12 mũ 5 x 8 = 2 mũ 13 x 243