23+23+23+23=
\(\sqrt{4}\)+\(\sqrt{25}\)
Tính \(\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+\dfrac{1}{\sqrt{23}+\sqrt{22}}+...+\dfrac{1}{\sqrt{2}+1}\)
\(A=\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+....+\dfrac{1}{\sqrt{2}+1}\)
\(A=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+......+\sqrt{2}-1=\sqrt{25}-1=4\)
|1-\(\sqrt{23}\)|+23-\(\sqrt{23}\)-\(\left|-2023\right|^0\)
Lời giải:
$|1-\sqrt{23}|+23-\sqrt{23}-|-2023|^0=\sqrt{23}-1+23-\sqrt{23}-1$
$=23-2=21$
\(\Leftrightarrow\hept{\begin{cases}\sqrt{\left(x+30\right)^2+23}=\left(y+30\right)^2+\sqrt{y+17}\\\sqrt{\left(y+30\right)^2+23}=\left(x+30\right)^2+\sqrt{x+17}\end{cases}}\)
giả sử \(x\ge y\Rightarrow\sqrt{\left(y+30\right)^2+23}\ge\sqrt{\left(x+30\right)^2+23}\Rightarrow y\ge x\)
=>x=y
lại có:
\(x+17\ge0\Rightarrow x+30=a\ge13\)
xét \(a^2-\sqrt{a^2+23}=\frac{a^4-a^2-23}{a^2+\sqrt{a^2+23}}=\frac{a^2\left(a^2-1\right)-23}{\sqrt{a^2+23}+a^2}>0\)
=>pt vô no
what hell ?
Bạn giải hộ ai à?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi diệu !
hok cũng giỏi ghê
~ tự biên tự diễn hả ~
Tính x=\(\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)
Đặt \(x=t-\frac{1}{3}\)
\(\Rightarrow t=x+\frac{1}{3}=\sqrt[3]{\frac{23+\sqrt{513}}{108}}+\sqrt[3]{\frac{23-\sqrt{513}}{0108}}\)
\(\Leftrightarrow t^3=\frac{23+\sqrt{513}}{108}+\frac{23-\sqrt{513}}{108}+3.\sqrt[3]{\frac{23^2-513}{108^2}}.t\)
\(\Leftrightarrow t^3=\frac{23}{54}+\frac{t}{3}\)
\(\Leftrightarrow t^3-\frac{t}{3}+\frac{31}{54}=1\)
Ta lại có
\(A=2x^3+2x^2+1\)
\(\Leftrightarrow\frac{A}{2}=x^3+x^2+\frac{1}{2}\)
\(=\left(t-\frac{1}{3}\right)^3+\left(t-\frac{1}{3}\right)^2+\frac{1}{2}\)
\(=t^3-\frac{t}{3}+\frac{31}{54}=1\)
\(\Rightarrow A=2\)
PS. Bài này nha. Bài kia viết mờ mắt luôn nên ghi nhầm vài chỗ (giải bằng điện thoại chán quá)
\(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}+\sqrt[3]{\frac{23-\sqrt{513}}{4}-1}}\right)\)
\(x=\frac{1}{3}\left(6,3733+6,3733-1\right)\)
\(x=\frac{1}{3}\left(12,7466-1\right)\)
\(x=\frac{1}{3}11,7466\)
\(x=\frac{1}{3}x11,7466\)
\(x=\frac{11,7466}{3}\)
\(x=3,9155\)
Bạn ơi bạn làm kiểu gì mà ra số đó vậy??
Cho x= \(\dfrac{1}{3}\left(\dfrac{\sqrt[3]{23+\sqrt{513}}}{4}+\dfrac{\sqrt[3]{23-\sqrt{513}}}{4}-1\right)\). Tính D=2x^3+2x^2+1
Số khá xấu. Bạn coi lại đề xem có viết nhầm biểu thức không?
Tính x= \(\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)
Trong các câu sau,mệnh đề nào sai
a)\(-\pi< -2\Leftrightarrow\pi^2< 4\)
b)\(\pi< 4\Leftrightarrow\pi^2< 16\)
c)\(\sqrt{23}< 5\Rightarrow2\sqrt{23}< 2.5\)
d)\(\sqrt{23}< 5\Rightarrow-2\sqrt{23}>-2.5\)
\(\sqrt{23+12\sqrt{6}}-\sqrt{23-12\sqrt{6}}\)
Tính giá trị biểu thức \(A=2x^3+2x^2+1\) với
\(x=\dfrac{1}{3}\left(\sqrt[3]{\dfrac{23+\sqrt{513}}{4}}+\sqrt[3]{\dfrac{23-\sqrt{513}}{4}}-1\right)\)
Giúp mình với các cao nhân
Đặt \(y=\sqrt[3]{\dfrac{23+\sqrt{513}}{4}}+\sqrt[3]{\dfrac{23-\sqrt{513}}{4}}\) ( bạn lập phương cả 2 vế nhé )
\(\Leftrightarrow2y^3=6y+23\left(1\right)\)
theo đề bài,ta có: \(x=\dfrac{1}{3}\left(y-1\right)\)
\(\Leftrightarrow3x=y-1\Leftrightarrow y=3x+1\left(2\right)\Leftrightarrow2y^3=54x^3+54x^2+18x+2\left(3\right)\)
Thế (2) và (3) vào (1)
\(\Leftrightarrow54x^3+54x^2+18x+2=6\left(3x+1\right)+23\)
\(\Leftrightarrow54x^3+54x^2+18x+2=18x+6+23\)
\(\Leftrightarrow54x^3+54x^2=27\)
\(\Leftrightarrow2x^3+2x^2=1\)
\(A=2x^3+2x^2+1\)
\(A=1+1=2\)