Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Linh
Xem chi tiết
Nguyễn Thị Thu Hạnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2019 lúc 12:24

Mai Đại Hùng
Xem chi tiết
meme
28 tháng 8 2023 lúc 19:55

Để tìm giá trị nhỏ nhất của biểu thức |x+3| + |x+7| + |x+9| + |x+15|, ta có thể sử dụng một số phương pháp. Một trong những phương pháp đơn giản là sử dụng định nghĩa của giá trị tuyệt đối.

Định nghĩa của giá trị tuyệt đối là:

Nếu x >= 0, |x| = x.Nếu x < 0, |x| = -x.

Với biểu thức |x+3| + |x+7| + |x+9| + |x+15|, ta có thể chia thành các trường hợp dựa trên giá trị của x.

Khi x ≤ -15:

Khi x ≤ -15, cả bốn giá trị trong biểu thức đều là số âm.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) - (x+9) - (x+15) = -4x - 34.

Khi -15 < x ≤ -9:

Khi -15 < x ≤ -9, ba giá trị đầu tiên trong biểu thức là số âm, còn giá trị cuối cùng là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) - (x+9) + (x+15) = -2x - 4.

Khi -9 < x ≤ -7:

Khi -9 < x ≤ -7, hai giá trị đầu tiên trong biểu thức là số âm, còn hai giá trị cuối cùng là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) + (x+9) + (x+15) = 4.

Khi -7 < x ≤ -3:

Khi -7 < x ≤ -3, giá trị đầu tiên trong biểu thức là số âm, còn ba giá trị còn lại là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) + (x+9) + (x+15) = 4x + 28.

Khi -3 < x ≤ -1:

Khi -3 < x ≤ -1, giá trị đầu tiên và giá trị thứ ba trong biểu thức là số âm, còn hai giá trị còn lại là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 28.

Khi -1 < x ≤ -0.75:

Khi -1 < x ≤ -0.75, giá trị đầu tiên, giá trị thứ ba và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ hai là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) - (x+15) = -4.

Khi -0.75 < x ≤ -0.5:

Khi -0.75 < x ≤ -0.5, giá trị đầu tiên, giá trị thứ hai và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ ba là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.

Khi -0.5 < x ≤ -0.25:

Khi -0.5 < x ≤ -0.25, giá trị đầu tiên, giá trị thứ hai và giá trị thứ ba trong biểu thức là số âm, còn giá trị thứ tư là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.

Khi -0.25 < x ≤ 0:

Khi -0.25 < x ≤ 0, giá trị đầu tiên, giá trị thứ hai và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ ba là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.

Từ các trường hợp trên, ta có thể thấy rằng giá trị nhỏ nhất của biểu thức |x+3| + |x+7| + |x+9| + |x+15| là -4.

Vì vậy, giá trị nhỏ nhất của biểu thức là -4.

Haibadaox2
Xem chi tiết
trần thị ngọc trâm
Xem chi tiết
Đặng Việt Hùng
Xem chi tiết
marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Nguyễn Lương Bích
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 8 2020 lúc 21:23

A = x2 + 5x + 7 

   = ( x2 + 5x + 25/4 ) + 3/4

   = ( x + 5/2 )2 + 3/4

\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinA = 3/4 <=> x = -5/2

B = 6x - x2 - 5

   = -( x2 - 6x + 9 ) + 4

   = -( x - 3 )2 + 4

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxB = 4 <=> x = 3

C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

   = [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

   = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

   = ( x2 + 5x )2 - 36

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> x = 0 hoặc x = -5

=> MinC = -36 <=> x = 0 hoặc x = -5

Khách vãng lai đã xóa
Nguyễn Lương Bích
22 tháng 8 2020 lúc 13:12

Thank bn.😊😉

Khách vãng lai đã xóa