Tìm a,b để \(f\left(x\right)=x^3+ax^2+2x+b\) chia hết cho \(g\left(x\right)=x^2+x+1\)
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5
xác định a, để da thức \(f\left(x\right)=x^3+2x^2+ax+b\)chia hết cho đa thức \(g\left(x\right)=x^2+x+1\)
Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
| n - 2 | 1 | - 1 | 3 | - 3 |
| n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)
Làm nốt
sai r.chờ tí,rảnh t làm lại cho,giờ làm câu 2 đã
Tìm a, b sao cho \(f\left(x\right)=ax^3+bx^2+10x-4\) chia hết cho đa thức \(g\left(x\right)=x^2+x-2\)
f(x) chia hết cho g(x)
=>\(a\cdot x^3+bx^2+10x-4\) ⋮\(x^2+x-2\)
=>\(ax^3+ax^2-2a\cdot x+\left(b-a\right)\cdot x^2+\left(b-a\right)\cdot x-2\left(b-a\right)+x\left(2a-b+a+10\right)+2\left(b-a\right)-4\) ⋮\(x^2+x-2\)
=>\(ax\left(x^2+x-2\right)+\left(b-a\right)\left(x^2+x-2\right)+x\left(3a-b+10\right)+2b-2a-4\) ⋮\(x^2+x-2\)
=>\(\begin{cases}3a-b+10=0\\ 2b-2a-4=0\end{cases}\Rightarrow\begin{cases}b=3a+10\\ b-a-2=0\end{cases}\Rightarrow\begin{cases}b=3a+10\\ b=a+2\end{cases}\)
=>\(\begin{cases}3a+10=a+2\\ b=a+2\end{cases}\Rightarrow\begin{cases}2a=-8\\ b=a+2\end{cases}\Rightarrow\begin{cases}a=-4\\ b=-4+2=-2\end{cases}\)
Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=2x^3-5x^2+ax+b\)
\(g\left(x\right)=x^2-4\)
Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=2x^3-5x^2+ax+b\)
\(g\left(x\right)=x^2-4\)
Tìm a và b để đa thức f(x) chia hết cho g(x)
a) \(f\left(x\right)=3x^4+5x^3+ax^2+b+10\)
\(g\left(x\right)=\left(x-1\right).\left(x+2\right)\)
Xác định các hệ số a,b,c để đa thức:
\(f\left(x\right)=x^5-2x^4-6x^3+ax^2+bx+c\) chia hết cho đa thức \(g\left(x\right)=\left(x^2-1\right)\left(x-3\right)\)
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) \(\left(a\ne0\right)\). Tìm a, b, c biết \(f\left(x\right)-2020\)chia hết cho x - 1, \(f\left(x\right)+2021\) chia hết cho x + 1 và \(f\left(x\right)\) nhận giá trị bằng 2 khi x = 0
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
\(f\left(0\right)=2\Rightarrow c=2\)
\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)
\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)
\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)
\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)