Tìm x
3√x - 1 = √x + 2
Tìm x, biết:
a) 2-x = 2 ( x - 2 ) 3 ; b) 8 x 3 - 72x = 0;
c) ( x - 1 , 5 ) 6 + 2 ( 1 , 5 - x ) 2 = 0; d) 2 x 3 +3 x 2 +3 + 2x = 0;
e) x 3 - 4x- 14x(x - 2) = 0; g) x 2 (x + 1)- x(x + 1) + x(x - 1) = 0.
tìm x biết
a) (x-2)3-x(x+1)(x-1)+6x(x-3)=10
b) (x+1)3-(x-1)3-6(x-1)2= -10
c) x3+3x2+3x+28=0
d) x3-6x2+12x-7=0
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
1.Tìm x:
a)2x(x+1)-2x2=4
b)x3-16x=0
c)(3x+1)2-8x2+2x=-6
2.Tìm m để đa thức f(x)=x3+6x2+12x+m chia hết cho đa thức h(x)=x+2
Bài 2:
x^3+6x^2+12x+m chia hết cho x+2
=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2
=>m-8=0
=>m=8
Bài 2: Tìm x, biết:
a) 4x(x + 1) = 8( x + 1) c) x2 – 6x + 8 = 0
b) x3 + x2 + x + 1 = 0 d) x3 – 7x – 6 = 0
\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)
a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)
c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)
Tìm x biết:
a) x3 - 7x2 - 9x + 63 = 0
b) x3 - 3x2 + 3x - 1 + 2.(x2 - x) = 0
1. Cho f(x)= x3 - 2x2 + 3x + 1; g(x)+ x3 + x - 1; h(x)= 2x2 -1
a) Tính f(x) - g(x) + h(x)
b) Tìm x sao cho f(x) - g(x) + h(x) = 0
2. Tìm nghiệm của
a) 5x + 3 (3x + 7) - 35
b) x2 + 8x - (x2 + 7x + 8) - 9
3. Tìm f(x) = x3 + 4x2 - 3x + 2; g(x) = x2 (x+4) + x - 5
Tìm x sao cho f(x) = g(x)
4. Tìm m sao cho k(x)= mx2 - 2x + 4 có nghiệm là -2
Bài 2. Cho các đa thức: f(x) = x3 - 2x2 + 3x + 1; g(x) = x3 + x - 1; h(x) = 2x2 - 1
a) Tính f (x) - g(x) + h(x).
b) Tìm x sao cho f (x) - g(x) + h(x) = 0.
Bài 3. Cho các đa thức: f (x) = x3 - 2x + 1; g(x) = 2x2 - x3 + x - 3
a) Tính f (x) + g(x);f(x) - g(x).
b) Tính f (x) + g(x) tại x = -1; x = -2.
Bài 4. Cho đa thức: A = -2xy2 + 3xy + 5xy2 + 5xy + 1.
a) Thu gọn và tìm bậc của đa thức A.
b) Tính giá trị của A tại x = 1
2
; y = -1.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Tk
Bài 3
a)
f(x) + g(x)
\(x^3-2x+1+\left(2x^2-x^3+x-3\right)\)
\(x^3-2x+1+2x^2-x^3+x-3\)
\(x^3-x^3-2x+x+1-3+2x^2\)
\(-x-2+2x^2\)
f(x) - g(x)
\(x^3-2x+1-\left(2x^2-x^3+x-3\right)\)
\(x^3-2x+1-2x^2+x^3-x+3\)
\(x^3+x^3-2x-x+1+3-2x^2\)
\(2x^3-3x+4-2x^2\)
b)
Thay x = -1, ta có:
\(-\left(-1\right)-2+2\left(-1\right)^2\) = 1
x = -2, ta có
\(2\left(-2\right)^3-3\left(-2\right)+4-2\left(-2\right)^2\)
\(2\cdot\left(-8\right)+6+4-8\) = -14
(x-3)(x3+3x+9)+x(x+2)(2-x)=1 tìm x
Mình nghĩ đề đổi lại: \(\left(x-3\right)\left(x^3+3x+9\right)\rightarrow\left(x-3\right)\left(x^2+3x+9\right)\)
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+4x-x^3=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
tìm m để pt \(x^4-2\left(m+1\right)x^2+2m+1=0\) có 4 nghiệm phân biệt
thỏa mãna, x1<x2<x3<X4<3
b,x1-x3=x3-x2=x2-x1
\(x^4-1-2\left(m+1\right)x^2+2\left(m+1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2\left(m+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=2m+1\end{matrix}\right.\)
Pt có 4 nghiệm pb khi: \(\left\{{}\begin{matrix}2m+1>0\\2m+1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne0\end{matrix}\right.\)
Do \(x=\pm1< 3\) nên để \(x_1< x_2< x_3< x_4< 3\) thì:
\(\sqrt{2m+1}< 3\Leftrightarrow m< 4\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}< m< 4\\m\ne0\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x_1-x_3=x_3-x_2\\x_1-x_3=x_2-x_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-x_2\\x_1-x_3=-x_1-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=-x_1\\x_3=3x_1\end{matrix}\right.\)
Do vai trò \(x_1;x_2\) như nhau, giả sử \(x_1< 0\) \(\Rightarrow x_1;x_3\) là 2 nghiệm âm
TH1: \(\left\{{}\begin{matrix}x_1=-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3=-\sqrt{2m+1}\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-\sqrt{2m+1}=-3\Rightarrow m=4\)
TH2: \(x_1=-\sqrt{2m+1}\Rightarrow\left\{{}\begin{matrix}x_3=-1\\x_3=3x_1\end{matrix}\right.\) \(\Rightarrow-1=-3\sqrt{2m+1}\) \(\Rightarrow m=-\dfrac{4}{9}\)
Tìm x (1+x)3-(x-2)3 = x3+1
( 1 + x )3 - ( x - 2 )3 = x3 + 1
⇔ 1 + 3x + 3x2 + x3 - ( x3 - 6x2 + 12x - 8 ) = x3 + 1
⇔ 1 + 3x + 3x2 + x3 - x3 + 6x2 - 12x + 8 = x3 + 1
⇔ 9x2 - 9x + 9 = x3 + 1
⇔ x3 + 1 - 9x2 + 9x - 9 = 0
⇔ x3 - 9x2 + 9x - 8 = 0
⇔ x3 - 8x2 - x2 + 8x + x - 8 = 0
⇔ x2( x - 8 ) - x( x - 8 ) + ( x - 8 ) = 0
⇔ ( x - 8 )( x2 - x + 1 ) = 0
⇔ x - 8 = 0 hoặc x2 - x + 1 = 0
⇔ x = 8 [ do x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 ) + 3/4 ≥ 3/4 > 0 ∀ x ]