Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Quốc Huy
Xem chi tiết
Trịnh Long
9 tháng 1 2020 lúc 16:28

Ta có: x+y=2⇒y=2−x

Khi đó:x.y=x(2−x)=2xx2

=1−(x2−2x+1)

=1−(x−1)2≤1

=>x.y≤1(đpcm)

Khách vãng lai đã xóa
Vũ Minh Tuấn
9 tháng 1 2020 lúc 17:40

Khách vãng lai đã xóa
Khánh Linh
9 tháng 1 2020 lúc 17:56

\(Vì\) \(:\)\(x+y=2\)\(x=2-y\)

\(Ta\) \(có\) \(:\)\(xy=\left(2-y\right)y\)

\(=\)\(2y-2^2\)

\(=-y^2+2y-1+1\)

\(=\left(y-1\right)^2+1\)

\(Vì\) \(:\)\(\left(y-1\right)^2\ge0\)\(-\left(y-1\right)^2< 0\) \((\)\(với\) \(mọi\) \(y)\)

\(-\left(y-1\right)^2+1\le1\)

\(Vậy\) \(xy\le1\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
titanic
Xem chi tiết
pham trung thanh
30 tháng 12 2017 lúc 16:03

Ta có: \(4xy\le\left(x+y\right)^2\)

Lại có: \(x;y>0\)

\(\Rightarrow\left(x+y\right)^2xy>0\)

\(\Rightarrow\frac{4xy}{\left(x+y\right)^2xy}\le\frac{\left(x+y\right)^2}{\left(x+y\right)^2xy}\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)

Nhok_baobinh
30 tháng 12 2017 lúc 16:08

Ta có :

\(\left(x+y\right)^2-4xy\)

\(=x^2+2xy+y^2-4xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

Lại có : \(x,y>0\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{4}{4xy}\)

\(\Rightarrow\frac{4}{\left(x+y\right)^2}\le\frac{1}{xy}\)<đpcm>

Aeris
Xem chi tiết
Nguyễn Ngọc Tho
14 tháng 1 2018 lúc 20:39

Ta có \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)\(\Rightarrow x-2\sqrt{xy}+y\ge0\)\(\Rightarrow x+y\ge2\sqrt{xy}\)

Mà x + y = 2 \(\Rightarrow\)\(2\ge2\sqrt{xy}\)\(\Rightarrow1\sqrt{xy}\le1\)\(\Rightarrow xy\le1\)

Ly Phuong Chuc
14 tháng 1 2018 lúc 20:40

 Vi 2 = 2 + 0 ; 1 + 1 .nen x.y = 2 . 0 ; 1.1 chi bang 0 hoac 1 nen x.y <= 1

Nguyễn Anh Quân
14 tháng 1 2018 lúc 20:42

Có : (x-y)^2 >= 0

<=> x^2+y^2-2xy >= 0

<=> 2xy < = x^2+y^2

<=> 4xy < = x^2+y^2+2xy = (x+y)^2 = 2^2 = 4

<=> xy < = 4 : 4 = 1

Dấu "=" xảy ra <=> x=y=1

=> ĐPCM

Tk mk nha

Vũ Thanh Huyền Linh
Xem chi tiết
Nguyễn Phương Thúy (tina...
20 tháng 2 2021 lúc 20:35

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 20:35

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)

👁💧👄💧👁
20 tháng 2 2021 lúc 20:36

\(x^2=yz\Rightarrow\dfrac{x}{y}=\dfrac{z}{x}\\ y^2=zx\Rightarrow\dfrac{y}{z}=\dfrac{x}{y}\\ z^2=xy\Rightarrow\dfrac{z}{x}=\dfrac{y}{z}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\\ \Rightarrow x=y=z\)

Cao Thị Quỳnh Chi
Xem chi tiết
titanic
Xem chi tiết
Trần Ngọc Bích
Xem chi tiết
Trương Thị Kiều Oanh
Xem chi tiết
Nguyễn Thanh Hằng
28 tháng 3 2018 lúc 17:03

1/ Ta có :

\(x+y=2\)

\(\Leftrightarrow x=2-y\)

\(\Leftrightarrow xy=y\left(2-y\right)\)

\(\Leftrightarrow xy=2y-y^2\)

\(\Leftrightarrow xy=-y^2+2y-1+1\)

\(\Leftrightarrow xy=-\left(y-1\right)^2+1\)

Với mọi x ta có :

\(\left(y-1\right)^2\ge0\)

\(-\left(y-1\right)^2\le0\)

\(\Leftrightarrow-\left(y-1\right)^2+1\le1\)

\(\Leftrightarrow xy\le1\left(đpcm\right)\)

2/ Ta có :

\(E=\dfrac{x^2+8}{x^2+2}=\dfrac{x^2+2+6}{x^2+2}=\dfrac{x^2+2}{x^2+2}+\dfrac{6}{x^2+2}=1+\dfrac{6}{x^2+2}\)

Để E lớn nhất thì \(\dfrac{6}{x^2+2}\) đạt GTLN

\(\Leftrightarrow x^2+2\) đạt GTNN

\(\Leftrightarrow x^2+2=1\)

\(\Leftrightarrow x^2=-1\)

\(\Leftrightarrow x\in\varnothing\)

Vậy ....

Phạm Nguyễn Tất Đạt
28 tháng 3 2018 lúc 18:26

1)Ta có:\(\left(x-y\right)^2\ge0\forall x,y\in R\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2-4xy\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow4xy\le2^2=4\)

\(\Rightarrow xy\le1\left(đpcm\right)\)

2)Ta có:\(x^2\ge0\)

\(\Rightarrow x^2+2\ge2\)

\(\Rightarrow\dfrac{6}{x^2+2}\le\dfrac{6}{2}=3\)

Áp dụng: \(E=\dfrac{x^2+8}{x^2+2}\)

\(E=\dfrac{x^2+2+6}{x^2+2}\)

\(E=1+\dfrac{6}{x^2+2}\)

\(E\le1+3=4\)

\(\Rightarrow MAXE=4\Leftrightarrow x=0\)

Nguyễn Diệu Linh
Xem chi tiết
Phước Nguyễn
12 tháng 3 2017 lúc 9:44

Sai đề rồi nha bạn! Điều kiện:  \(x^2+y^3\ge x^3+y^4\)

Sử dụng bất đẳng thức  \(C-S,\)  ta có:

\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)

\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)

\(\Rightarrow\)  \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\)  \(\Leftrightarrow\)  \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)

Lại có:   \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)

\(\Rightarrow\)  \(x^2+y^2\le x+y\)  \(\left(2\right)\)

Mặt khác, từ  \(\left(2\right)\)  với lưu ý rằng  \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và  \(x,y\in R^+\) , ta thu được:

 \(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\)  \(x^2+y^2\le2\)   \(\left(3\right)\)

nên do đó,  \(\left(i\right)\)  suy ra \(x+y\le\sqrt{2.2}=2\)  \(\left(4\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)  và  \(\left(4\right)\)  ta có đpcm